Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Continuando con los trabajos de investigación y validación del mapa preliminar de Amenazas Potenciales del Volcán Cotopaxi – Zona Oriental, los días 17 al 19 de agosto del 2016 un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), realizó trabajos de campo en la rivera del río Napo en el tramo que une Puerto Napo con Puerto Misahuallí. El trabajo consistió en encontrar sitios en donde haya vestigios (depósitos) de los lahares primarios del volcán Cotopaxi, correspondientes a las erupciones históricas que afectaron esta zona según se reporta en registros escritos.

Los mapas de amenaza volcánica son elaborados en base a una serie de modelamientos matemáticos (sistemas de ecuaciones) y datos obtenidos en campo. La validación de un mapa consiste en verificar que los resultados del modelamiento matemático reproduzcan adecuadamente lo ocurrido en un evento pasado; si un determinado modelo se ajusta a lo observado en campo, entonces es considerado válido o representativo.

Validación del Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi -  Zona Oriental

Figura 1. Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi - Zona Oriental fue presentado y entregado a las autoridades de la Provincia de Napo en noviembre del 2015.

 

Varias muestras de los lahares primarios del Cotopaxi fueron recolectadas en el tramo de estudio para posteriormente ser analizadas en laboratorio. Los resultados finales del trabajo serán presentados a las autoridades, población y comunidad científica en el corto y mediado plazo.

Validación del Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi -  Zona Oriental

Figura 2. Depósitos de los lahares primarios del volcán Cotopaxi – Zona Oriental. Varias muestras son recolectadas para posteriores análisis en laboratorio.

 

La colaboración de los moradores de las zonas estudiadas facilitaron el trabajo de los técnicos del IG. Su conocimiento sobre la dinámica del río Napo y los registros verbales trasmitidos por sus ancestros (relatos sobre grandes inundaciones), aportaron al conocimiento sobre los lahares en esta zona. El IG-EPN aprovecha esta nota para agradecer la amabilidad y buena voluntad de los lugareños, cuya colaboración sin duda es invaluable en este estudio.

Validación del Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi -  Zona Oriental

Figura 3. Trabajo de validación del mapa junto a los lugareños de la población de Sindy.

 

El Instituto Geofísico de la Escuela Politécnica Nacional continua en su ardua labor de monitorizar y evaluar la actividad sísmica y volcánica del Ecuador desde 1983.

FJV/DS
Instituto Geofísico
Escuela Politécnica Nacional

Lunes, 01 Septiembre 2014 00:00

VCO (Voltage-Controlled Oscillator)

Un VCO (Voltage-Controlled Oscillator) es una parte muy importante de la telemetría analógica. Se trata de un dispositivo electrónico que emite una señal portadora cuya frecuencia varía de acuerdo con la amplitud de una señal de entrada. En otras palabras, es el responsable de incluir la información de un sensor dentro de una onda electromagnética para que se pueda recibir remotamente.


En el área de instrumentación del IG se han desarrollado al menos tres modelos diferentes de VCO, basados en componentes analógicos y en componentes digitales; en la actualidad siguen funcionando en nuestra red analógica de sismómetros.

Informe Especial Wolf N. 4 - 2015

IGEPN - JICA

En las últimas décadas se han registrado varios tsunamis generados por sismos de magnitudes mayores que 8.0. El 26 de diciembre del 2004, un terremoto frente a las costas de las islas de Sumatra y Andamán en Indonesia generó un tsunami que no solo afectó a las costas cercanas sino que cruzó el Oceáno Indico y afectó Malasia, Sri Lanka, India, Myamar e incluso Somalia, Tanzania y Sudáfrica, con más de 300000 entre muertos y desaparecidos.

 

El terremoto de Chile del 27 de febrero del 2010 es otro ejemplo en el que más personas fallecen por el tsunami que por el sismo en sí. El sismo de Tohoku del 11 de marzo del 2011 y su posterior tsunami causaron la pérdida de más de 19000 vidas humanas en Japón.

 

Frente a las costas ecuatorianas, durante el siglo pasado, se generaron cuatro sismos mega-terremotos en la zona de subducción. Esta secuencia se inició con el gran terremoto de 1906 (magnitud 8.8 Mw) y fue seguida por los terremotos de 1942(7.8 Mw), 1958 (7.7 Mw) y 1979 (8.2 Mw). El sismo de 1906 generó un tsunami destructivo para las costas en la zona entre Ecuador y Colombia.

 

Con estos antecedentes, en el 2013 se firmó un convenio entre JICA, la Secretaría de Gestión de Riesgos (SGR), el Instituto Oceanográfico de la Armada (INOCAR) y la Escuela Politécnica Nacional – Instituto Geofísico (IG-EPN) para el proyecto “Mejoramiento de la Capacidad de Monitoreo de Terremotos y Tsunamis para la Alerta Temprana de Tsunamis”, a fin de instalar un sistema de detección temprana de sismos tsunamigénicos y la emisión de alertas tempranas de estos fenómenos.

 

Este convenio empezó a ejecutarse en el 2014 y, el 24 de marzo, se celebró en Guayaquil, la Primera Reunión del Comité Conjunto de Coordinación del Proyecto. Como parte del proyecto se realizaron varias actividades de capacitación y entrenamiento del personal ecuatoriano de las tres instituciones participantes.


El día de hoy lunes 29 de junio de 2015, el Sr. Toshiaki Furuya Representante Residente de JICA en Ecuador hizo la entrega al Instituto Geofísico de un vehículo marca Toyota modelo Fortuner 2015 para utilizarse en las actividades programadas de este proyecto.

 

Descargar brochure "Mejoramiento de la Capacidad de Monitoreo de Terremotos y Tsunamis para la Alerta Temprana de Tsunamis”

 

Informe Especial Wolf N. 4 - 2015

Figura : El Sr. Toshiaki Furuya Representante Residente de JICA en Ecuador hizo la entrega al Instituto Geofísico de la Escuela Politécnica Nacional de un vehículo marca Toyota modelo Fortuner 2015.

En el Ecuador existen centenares de vertientes o fuentes de agua, tanto  termales como frías, ubicadas a lo largo y ancho del país. Un grupo representativo (54 fuentes) de fuentes termales del país fue estudiado y actualizado en cuanto a sus parámetros físicos y químicos en el año 2009 (Inguaggiato et al., 2010). La distribución de las vertientes estudiadas se muestra en la Figura 1.

Fuentes Termales en el Ecuador Figura 1.- Distribución de las vertientes de agua en el Ecuador estudiadas por Inguaggiato et al. (2010). E1 a E57 corresponden a los números de muestras.

Estas fuentes están generalmente asociadas a sistemas de fallas tectónicas y/o a sistemas volcánicos. Las temperaturas de las aguas presentan un amplio rango, entre 15 y 74.5ºC con un pH entre 4.6 y 9.2 (Figuras 2 y 3). La conductividad eléctrica varía entre 51 y 20000 uS/cm. Existen fuentes con conductividades mayores, que pueden estar relacionadas a procesos de evaporación en superficie (hasta 68200 μS/cm en Salinas de Bolívar). La conductividad eléctrica de estas aguas es elevada con respecto a la medida en aguas superficiales (< 200 μS/cm en ríos), indicando la presencia de distintos elementos en solución. Los iones dominantes en el agua son: Sodio, Potasio, Magnesio, Calcio, Fluoruro, Cloruro, Bromuro, Sulfato, Bicarbonato y Sílice. Además de estos iones dominantes existen otros elementos en solución en concentraciones más bajas, conocidos como elementos en trazas, y que se expresan en partes por millón (ppm) o partes por billón (ppb). Los elementos en trazas analizados generalmente son: Li, Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sb, Cs, Ba, Hg, Pb, Th, U, B. Casi todos estos elementos pueden ser tóxicos si superan la concentración permitida para el consumo humano (p.e. arsénico 5 ppb, mercurio 1 ppb, boro 0,5 ppm) y su ingestión contínua puede producir envenenamiento tanto para el ser humano como para las plantas y animales que los consuman. Es por esto que no se debe consumir aguas de vertientes sin conocer con precisión su composición química.

Fuentes Termales en el Ecuador Figura 2.- pH vs. Conductividad de las vertientes estudiadas. Nótese que las medidas en aguas superficiales (ríos) muestran baja conductividades con un pH variable. La mayoría de las aguas termales tienen un pH entre 5.5 y 7.

Fuentes Termales en el Ecuador Figura 3.- pH vs. Temperatura de las aguas estudiadas. Nótese que las aguas superficiales tienen temperaturas menores a 10ºC, mientras que las aguas de vertiente generalmente están sobre los 15ºC.

Algunas de estas vertientes presentan además un alto contenido de gases. El gas puede estar disuelto en el agua (p.e. el agua de Güitig), pero también puede  presentarse como gas libre o conocido como burbujeante. Estas burbujas de gas dan la impresión de que el agua está “hirviendo”, pese a que su temperatura es inferior a la temperatura de ebullición (esta última disminuye con la altura: el agua hierve a menor temperatura en Quito que en Guayaquil). Estas burbujas evidencian la presencia de gas en la vertiente (Figura 4). Esta fase gaseosa está principalmente compuesta por CO2 (anhídrido carbónico o dióxido de carbono), aunque también pueden estar presentes otras especies gaseosas como: CH4 (metano), H2S (ácido sulfhídrico), CO (monóxido de carbono), O2 (oxígeno) N2 (nitrógeno), He (helio), Ar (argón) y H2O (vapor de agua).

De estos gases el CO2, el H2S y el CO son altamente peligrosos para el hombre y los animales cuando están presentes en concentraciones elevadas. En los estudios realizados en las vertientes del país, el CO2 constituye generalmente más del 80% del gas burbujeante. El dióxido de carbono (CO2) es un gas incoloro, inodoro y tóxico en altas concentraciones, así como también asfixiante (impide respirar !!, es decir: huir o morir) también produce irritación en los ojos, nariz y garganta. El CO2 es más denso que el aire (desplaza al oxígeno) y se concentra en zonas bajas de hondonadas y/o de espacios cerrados; es así que no se debe ingresar a vertientes burbujeantes captadas en espacios cerrados (tanques de captación artificiales o huecos naturales) donde el CO2 puede estar concentrado sobre el nivel de salida del agua termal: ese espacio se convierte entonces en una trampa mortal (si Ud. no huye a tiempo).

Fuentes Termales en el Ecuador Figura 4 a.- fuente de Oyacachi, captación cerrada. No se permite el ingreso al público. b.- Potrerillos en Carchi - bicarbonatada-ferruginosa, peligrosa por su alto contenido de CO2. c.- Captación en Nono, cerrada al público. d.- Pululahua, captación rica en CO2. Este tipo de captaciones deben estar a decenas hasta cientos de metros de las piscinas abiertas al público.

Lamentablemente en el país se han registrado varios casos de fallecimiento de personas por asfixia a causa del ingreso directo a las vertientes termales con gases burbujeantes (principalmente CO2). Es así que el 21 de enero de 2015, 6 personas fallecieron en la fuente de Tangalí, cercana a la ciudad de Otavalo. Así mismo, en Pitzanzi (Imbabura) y Palitahua (Tungurahua) han fallecido en años anteriores 2 personas al ingresar a los tanques de captación construidos alrededor de las fuentes donde se concentran los gases. También ocurrió el fallecimiento de una persona en Aguas Hediondas (Carchi), al tomar baños directamente en la vertiente con gas burbujeante rico en H2S (este gas se lo reconoce porque huele a huevos podridos cuando se presenta en concentraciones bajas y es "inodoro" y letal a concentraciones altas).

Los balnearios y piscinas, donde se aprovecha este recurso geotérmico de las aguas termales, no constituyen en sí un riesgo para el ser humano, siempre y cuando las piscinas estén construidas a una distancia prudente de las captaciones de las vertientes y estén en un lugar abierto y ventilado. Bajo ningún concepto se debe construir “saunas” o “cajones” donde se aproveche el gas que sale directamente de las vertientes, estos son potenciales trampas mortales  de CO2 u otro gas tóxico.

Recomendaciones :

  • No ingerir aguas de vertientes cuya composición química precisa se desconoce.
  • No ingresar en vertientes directamente, especialmente si se observa burbujeo de gases y si la fuente está en una hondonada.
  • No ingresar en tanques de captación construidos sobre/alrededor de vertientes/fuentes termales.
  • No construir “saunas” sobre el sitio de salida/ojo de agua de las vertientes/fuentes termales.

Más detalles sobre las diferentes especies gaseosas se pueden encontrar en http://www.ivhhn.org/uploads/es/gases_espanol.pdf, o en http://www.ivhhn.org/images/pdf/gas_guidelines.pdf

El estudio de Inguaggiato et al. (2010) puede ser solicitado directamente en el Instituto Geofísico de la Escuela Politécnica Nacional.

Instituto Geofísico
Escuela Politécnica Nacional

Como parte de la vigilancia volcánica que el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos del Instituto realizó una campaña de medición y muestreo en fuentes termales asociadas al volcán Quilotoa del 15 al 16 de febrero del 2024, este tipo de muestreos se vienen realizando en Quilotoa desde fines del año 2022.

Vigilancia de fuentes termales en el volcán Quilotoa
Figura 1.- Lago cratérico del volcán Quilotoa, 16/02/2024 (Foto: D. Sierra/ IG-EPN).


El volcán Quilotoa, con 3914 msnm, es un volcán con lago cratérico perteneciente a la Cordillera Occidental, es considerado como “Potencialmente Activo” y se ubica al Oeste de la ciudad de Latacunga. Su última erupción tuvo lugar hace aproximadamente 800 años (siglo XII), produciéndose grandes flujos piroclásticos y un depósito de caída de ceniza que se encuentra distribuido a lo largo del Norte del país.

Vigilancia de fuentes termales en el volcán Quilotoa
Figura 2.- Medición de parámetros físico-químicos en el sector de Casa Quemada 16/02/2024 (Foto: D. Sierra/ IG-EPN).


Durante la campaña se midieron los parámetros físico-químicos en cinco fuentes termales y un drenaje superficial en los alrededores del volcán Quilotoa. Adicionalmente se tomaron muestras de agua que serán analizadas en el Centro de Investigación y Control Ambiental (CICAM) de la EPN y en el Laboratorio Privado Gruentec.

Vigilancia de fuentes termales en el volcán Quilotoa
Figura 3.- (Izq.) Medición de parámetros físico-químicos en la fuente termal de Padre Rumi (Foto: J. Salgado/IG-EPN). (Der.) Medición de parámetros físico-químicos en la fuente termal de Cashapara (Foto: D. Sierra/ IG-EPN).


Estas tareas forman parte de las actividades de monitoreo rutinario que realiza el IG-EPN en las zonas de influencia volcánica, para mejorar el entendimiento de la dinámica de los centros volcánicos de nuestro país.

¿Quieres aprender más sobre los fluidos volcánicos? Visita el siguiente link: https://www.igepn.edu.ec/publicaciones-para-la-comunidad/comunidad-espanol/tripticos/21957-triptico-aguas-termales-y-gas-2019

D. Sierra, J. Salgado
Instituto Geofísico
Escuela Politécnica Nacional