Mostrando artículos por etiqueta: volcán - Instituto Geofísico - EPN

Actividad externa baja e interna baja


Resumen
Durante las últimas semanas se ha observado una baja actividad externa en el volcán Cotopaxi, que está caracterizada principalmente por la emisión de columnas de gases. Ninguno de los parámetros de monitoreo (sismicidad, deformación, SO2) muestra una anomalía durante las últimas semanas. Sin embargo, existe la posibilidad de pequeñas explosiones freáticas que afectarían la zona cercana al cráter.

Publicado en Volcanes

Los días 21 y 23 de diciembre de 2016, personal técnico del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN), realizó dos sobrevuelos a los volcanes activos del Ecuador. El día 21 de diciembre en una avioneta CESSNA 206 STATIONAIR a los volcanes Sangay y Tungurahua y el día 23 de diciembre en un avión QUEST KODIAK a los volcanes Cayambe y Cotopaxi, siguiendo las rutas que se muestra en la Figura 1.

Publicado en Volcanes
Miércoles, 28 Diciembre 2016 19:44

Informe Especial Volcán Cayambe Nº 5 - 2016

Actualización de la actividad

RESUMEN

Desde la publicación del 13 de diciembre del Informe Especial No. 4, el volcán Cayambe sigue con una actividad sísmica anómala caracterizada por sismos de tipo volcano-tectónicos (fractura) y largo periodo (movimiento de fluido) ubicados entre 2 y 8 km debajo de la cumbre.  En las últimas dos semanas se han registrado un promedio de hasta 40 sismos por día, notándose que desde el 24 de diciembre el número de eventos se incrementó, en especial los del tipo volcano-tectónicos, generándose además un enjambre el día 27, cuando se contabilizaron 100 sismos, de pequeña magnitud.

Por otro lado, se mantiene un persistente y fuerte olor a azufre que ha sido reportado por las andinistas durante su ascensión a la cumbre y se ha confirmado la presencia de nuevas grietas en el glaciar cerca de la parte superior del volcán.

En cuanto a la deformación de los flancos se observa que se mantiene la anomalía, ahora un poco más clara en los datos de GPS.

Se realizó un sobrevuelo al volcán y no se observaron anomalías térmicas en el mismo, pero se pudo distinguir la grieta que fue descrita por los andinistas en días pasados.

Debido al tipo de sismos registrados y sus localizaciones se estima que la anomalía agitación interna del volcán es de origen magmático. Una erupción a mediano plazo (semanas a meses) es posible aunque poco probable si no se producen cambios bruscos o una aceleración en los parámetros de monitoreo. Los escenarios eruptivos detallados en los informes anteriores siguen válidos: S0- una erupción freática muy pequeña cuya influencia sería las inmediaciones del cráter; S1- una erupción magmática pequeña similar el evento ocurrido el 1785.  Se continuará evaluando el comportamiento del volcán y reforzando la red de monitoreo instrumental en las próximas semanas.

Publicado en Volcanes

Se mantiene la actividad sísmica

RESUMEN

El volcán Cayambe continúa con una actividad sísmica anómala caracterizada por sismos de tipo volcano-tectónico (fractura) y largo periodo (movimiento de fluidos), ubicados entre 2 y 8 km bajo la cumbre. El 8 de diciembre se registró un sismo de largo periodo de magnitud M=3 a 7 km bajo la cumbre. Adicionalmente se observa una muy ligera deformación del volcán detectada mediante instrumentos. Los andinistas que han subido a la cumbre reportan un aumento del olor a azufre y la presencia de nuevas grietas en el glaciar del volcán.

La agitación que presenta el volcán tiene probablemente un origen magmático o hidrotermal. De no haber cambios en los parámetros de monitoreo, se considera que una erupción del volcán es posible, pero poco probable, a mediano plazo (semanas a meses). Dos escenarios eruptivos se detallan al final de este informe: S0, una erupción freática muy pequeña, cuya zona de afectación serían las zonas cercanas al cráter; S1, una erupción magmática pequeña, similar al evento ocurrido en 1785-1786. Se continuará evaluando el comportamiento del volcán en las próximas semanas y se actualizarán los escenarios en caso de registrarse cambios significativos.

Publicado en Volcanes
Viernes, 02 Diciembre 2016 17:27

Informe Especial - Volcán Cayambe Nº 3 - 2016

Anomalías sísmicas

RESUMEN

El 5 de junio del presente año se registró un incremento en el número de eventos sísmicos tipo VT (generados por el fracturamiento de rocas). Este enjambre se reportó en el informe especial publicado el 22 de Junio de este año. Esta actividad ocurrió en la forma de un enjambre (varios sismos de magnitudes similares producidos en un período corto de tiempo) que se localizó al nororiente, fuera del edificio volcánico, y muy cerca de uno de los sistemas de fallas más activos que cruzan el Ecuador (Sistema de fallas Chingual).

Esta actividad fue disminuyendo progresivamente retornando al nivel de base durante el mes de Agosto. A partir del inicio del mes de Septiembre se observó nuevamente un incremento leve pero progresivo que ha sido más marcado en las últimas semanas.

En los últimos días se registraron varios eventos volcano-tectónicos. En particular el 14 de noviembre se registró un sismo de magnitud 3.3 que se localizó bajo el volcán y el día 27 ocurrió otro sismo de magnitud 3.6, también bajo el volcán y que se sintió levemente en las zonas altas del edificio. Estos dos eventos son particularmente anómalos debido a su magnitud. Con el sismo ocurrido el día 27, se presentó un enjambre de sismo volcano-tectónicos, que tuvo una duración de 2 horas. La sismicidad ha continuado pero con menor intensidad, sin retornar a su nivel de base. La ubicación de los sismos, desde septiembre, cambió con respecto a lo observado en junio, ya que la mayoría se ubican directamente bajo el volcán. Esta migración de la sismicidad es algo que se ha observado en otros sistemas volcánicos, en ocasiones, previo al inicio de un periodo de actividad eruptiva, como por ejemplo en el volcán Guagua Pichincha en 1998-1999. Sin embargo es necesario indicar que este tipo de actividad con migración de eventos, no necesariamente termina en erupción, como por ejemplo Cotopaxi, 2001.

Adicionalmente, en este último periodo se han recibido reportes de andinistas sobre un incremento del olor de azufre que se percibe mucho más fuerte que en meses anteriores.

Dadas las características de la actividad actual, lo observado podría estar relacionado con una perturbación del volcán, posiblemente con una componente magmática que estaría alterando el sistema hidrotermal. Si esta perturbación se mantiene en los mismos niveles, podría desencadenar en el futuro (meses) una erupción pequeña, de características similares a la que presentó el volcán Cotopaxi en el año 2015.

El otro escenario posible es que esta actividad anómala regrese al nivel de base,  en cuyo caso la probabilidad de que se produzca una erupción sería muy remota.

Estos escenarios pueden cambiar en el tiempo en función de los datos de monitoreo que se sigan registrando en el volcán. La evolución de estos escenarios será presentada mediante informes especiales que se seguirán emitiendo de acuerdo a la actividad del Cayambe.

Publicado en Volcanes

Monitoreo Térmico, Observación de la Actividad Superficial, Muestreo de Productos Volcánicos Recientes, Reparación y Mantenimiento de las Estaciones de Monitoreo.

Como parte de las actividades de investigación y monitoreo continuo que lleva a cabo el Instituto Geofísico de la Escuela Politécnica Nacional en el volcán Reventadory gracias al convenio que la institución mantiene con OCP – Ecuador, fue posible realizar una misión terrestre y aérea para realizar diversos trabajos de campo en el volcán El Reventador.

Publicado en Volcanes

Como parte del monitoreo del complejo volcánico Chiles-Cerro Negro, entre el 8 al 11 de noviembre de 2016 un equipo de técnicos del Instituto Geofísico (IG-EPN) realizaron mediciones de parámetros físicos y toma de muestras de agua en las fuentes termales aledañas al complejo. Se visitó las fuentes termales de: Potrerillos, El Artesón, Aguas Hediondas y Aguas Negras. Además se hicieron mediciones en la zona conocida como “Lagunas Verdes”.

Publicado en Volcanes

Actualización de la actividad del volcán

Resumen
Luego del Informe Especial Nº9 publicado el 4 de Octubre de este año. La actividad interna del volcán Tungurahua ha llegado hasta un nivel bajo y a nivel superficial prácticamente a nulo a excepción de una intermitente y leve actividad fumarólica en el flanco nor-oriental (Fig. 1).

Informe Especial Tungurahua N. 10 - 2016

Figura 1. Volcán Tungurahua. Leve actividad fumarólica en el flanco nor-oriental. (Foto: B Bernard 07.11.2016)

 

En base a los datos de monitoreo y observaciones directas, se estima que una reactivación del Tungurahua en un mediano plazo (semanas a meses) es poco probable. Sin embargo, en base a la rapidez de los cambios de actividad del Tungurahua en los últimos años, es importante mantenerse atentos a cualquier variación en los parámetros de monitoreo. Vale remarcar que las erupciones volcánicas son impredecibles y que los escenarios aquí planteados pueden cambiar en función de la actividad del volcán y del análisis de los datos provenientes del monitoreo instrumental y visual.


Sismicidad, Deformación y Emisiones de SO2
La actividad sísmica del volcán Tungurahua está catalogada como baja y se caracteriza por pocos eventos LP (movimiento de fluidos) y VT (fracturación de roca) en un promedio de un evento/día. Por otra parte, la deformación muestra una tendencia inflacionaria en la estación de Retu (más cercana al cráter del volcán) con una variación neta de 72 urad para esta semana a una tasa de 15 urad/día (Fig. 2), misma que en el transcurso de los días se ha ido estabilizando.

Informe Especial Tungurahua N. 10 - 2016

Figura 2. Evolución de la actividad sísmica y deformación para la estación de Retu para el periodo 01.10.2015 – 31.10.2016.

 

Valores bajos de emisión de SO2 con un promedio de 300 ton/día sumada a las pocas medidas válidas ratifican la actividad baja que presenta el volcán.


Observaciones Visuales
Las condiciones de observación han sido mayormente favorables. Se ha observado leve a nula actividad fumarólica durante estas últimas semanas. Adicionalmente se realizó un sobrevuelo en el que se midieron temperaturas máximas de 51,3 °C en el cráter del volcán (Fig. 3)

Informe Especial Tungurahua N. 10 - 2016

Figura 3: Izquierda, Borde interno del cráter visto desde el suroccidente del volcán. Derecha, imagen térmica que muestra en color amarillo las zonas de mayor temperatura en el cráter. (Foto e imagen: M. Almeida. 17.10.2016)

 


Escenarios Eruptivos
Se consideran los siguientes potenciales escenarios a mediano plazo (semanas a meses):

  • 1) Se mantiene la actividad BAJA: la actividad interna y superficial se mantiene en niveles bajos como los registrados hasta ahora  y por tanto no se produce una erupción; este escenario al momento corresponde al más probable.
  • 2) Reactivación Rápida: De darse un incremento significativo en la actividad sísmica (enjambre de eventos LP y VT) podrían conllevar a un escenario de estilo vulcaniano, el inicio de esta fase eruptiva podría producir una apertura rápida del conducto con explosiones moderadas a grandes (ej. Mayo 2010, Julio 2013, Febrero 2014). En este escenario se podría formar una columna eruptiva grande (hasta 10 km sobre el nivel del cráter) y flujos piroclásticos que podrían descender por las quebradas hasta alcanzar el pie del volcán. Las caídas de ceniza y cascajo asociadas a este tipo de columna eruptiva alta pueden afectar zonas situadas lejos del volcán con direcciones variables dependiendo de la dirección de los vientos a esas alturas. Los proyectiles balísticos (bloques y bombas volcánicas) asociados a las explosiones podrían alcanzar una distancia de 5 km desde el cráter. En este escenario pequeños flujos de lava podrían bajar por el flanco Noroccidental con un alcance de menos de 4 km. Se podrían generar lahares secundarios debido a la removilización posterior por lluvia del material eruptivo y podrían cortar la carretera Baños-Penipe, en función de la cantidad de material acumulado en las quebradas y de la intensidad/duración de la lluvia, estos lahares podrían ser pequeños a moderados. Este escenario eruptivo al momento es poco probable en función de los datos resultados del monitoreo instrumental y visual.
  • 3) Reactivación paulatina: De darse un incremento en la actividad interna del volcán podría darse un escenario de estilo estromboliano, que puede durar desde varias semanas hasta algunos meses, se podría observar explosiones pequeñas a moderadas, fuentes de lava y columnas continúas de ceniza de menos de 6 km sobre el nivel del cráter (ej. Abril-Mayo 2011, Marzo 2013, Abril 2015).  El principal fenómeno que afectaría a la población sería la caída de ceniza, moderada a fuerte, localizada principalmente en la zona occidental del volcán (excepto si se observa un cambio de la dirección del viento). Proyectiles balísticos (bloques y bombas volcánicas) y flujos piroclásticos pequeños podrían alcanzar una distancia de 2,5 km desde el cráter. Lahares secundarios pequeños se podrían formar debido a la removilización por lluvia del material eruptivo y podrían cortar la carretera Baños-Penipe.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán y del análisis de los datos provenientes del monitoreo instrumental y visual. El IGEPN mantiene una vigilancia permanente en el centro TERRAS (Quito) y en el Observatorio del Volcán Tungurahua.


FJV, BB, AA
Observatorio del Volcán Tungurahua (OVT)
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Evaluación de la actividad del volcán y análisis de la posibilidad de reactivación de corto a mediano plazo (próximos días a semanas)

Resumen
Como se mencionó en los Informes especiales N°7 y N°8, desde el 12 de septiembre de 2016 se ha registrado un incremento evidente del número de sismos LP, y la aparición de pequeños episodios de tremor a partir del 16. El 18 de septiembre se observó un enjambre de 24 LP entre las 4h08 y las 4h24 (tiempo local). Adicionalmente, el 24 de septiembre a las 14h00 (tiempo local) se registró un incremento en la actividad sísmica interna del volcán con un aumento claro en el número de sismos LP’s y episodios de tremor en zonas cercanas al cráter.  Sin embargo, a diferencia de lo ocurrido en otras ocasiones anteriores, este incremento de la sismicidad no resultó en una actividad volcánica en superficie.

El 1 de Octubre se registró un episodio de tremor que duró aproximadamente una hora. El número de sismos LP y VT se mantiene fuera del nivel base y en consecuencia se considera que la actividad interna está en un nivel moderado con una tendencia descendente.

En base a los recientes cambios observados en la actividad sísmica del volcán, se estima que una reactivación del Tungurahua en un plazo corto a mediano (días a semanas) es posible y se consideran los mismos escenarios eruptivos potenciales: 1) una reactivación rápida, de estilo vulcaniano, con una gran columna eruptiva y flujos piroclásticos; que corresponde al escenario más probable, y 2) una reactivación paulatina, de estilo estromboliano, con explosiones moderadas y caídas de ceniza principalmente.


Sismicidad
Desde el 27 de Septiembre hasta el día de hoy, la actividad sísmica en el volcán se ha mantenido moderada. Durante este periodo, se han registrado entre 1 y 8 eventos de tipo LP por día, y entre 0 y 3 eventos tipo VT por día. El día Sábado, 01 de Octubre, se registró un episodio de tremor que duró aproximadamente 1 hora (Figura 1).

Informe Especial Tungurahua N. 9 - 2016

Figura 1: Episodio de tremor registrado en la estación sísmica más cercana al cráter de Tungurahua, BRTU. El gráfico superior es el espectrograma del episodio de tremor, y el gráfico inferior muestra la forma de onda de la estación BRTU. La flecha roja indica el arribo de un evento sísmico ocurrido en Perú.


Desgasificación
No se observan cambios en los últimos días para el flujo diario máximo de SO2 como tampoco para el número de medidas válidas. Los dos indicadores se encuentran en el nivel de base y podrían indicar que el conducto se encuentra cerrado luego de la erupción de febrero-marzo 2016.

Informe Especial Tungurahua N. 9 - 2016

Figura 2: Emisión de SO2. Se presenta el promedio diario medido por la red de DOAS del Tungurahua.


Observaciones visuales
Durante los últimos días, las condiciones de observación visual han sido variables. Cuando el volcán ha permanecido despejado, se ha observado leve actividad fumarólica en el borde del cráter (Figura 3).

Informe Especial Tungurahua N. 9 - 2016

Figura 3: Volcán parcialmente despejado, el 1 de octubre, se observa leve actividad fumarólica al interior del cráter (Foto: S. Aguaiza OVT/IG/EPN).

La baja desgasificación podría indicar un taponamiento del conducto que impide el paso hacía el exterior de los gases magmáticos. Tomando en cuenta que la actividad sísmica se mantiene por encima del nivel de base se considera que una reactivación de corto a mediano plazo (próximos días a semanas) es posible.


Escenarios eruptivos
Se mantienen los escenarios propuestos en los informes N°7 y N°8 que podrían ocurrir de corto a mediano plazo (próximos días a semanas):

  • 1) Reactivación rápida. Durante este escenario de estilo vulcaniano, al inicio de la fase eruptiva o después de pocos días, se podría producir una apertura rápida del conducto con explosiones moderadas a grandes (ej. Mayo 2010, Julio 2013, Abril 2014). En este escenario se podría formar una columna eruptiva grande (hasta 10 km sobre el nivel del cráter) y flujos piroclásticos que podrían descender por las quebradas hasta alcanzar el pie del volcán. Las caídas de ceniza y cascajo asociadas a este tipo de columna eruptiva alta tienen una mayor probabilidad de afectar zonas situadas más lejos del volcán con direcciones más variables dependiendo de la dirección de los vientos a esas alturas. Los proyectiles balísticos (bloques y bombas volcánicas) asociados a las explosiones podrían alcanzar una distancia de 5 km desde el cráter. En este escenario pequeños flujos de lava podrían bajar por el flanco Noroccidental con un alcance de menos de 4 km. Se podrían generar lahares secundarios debido a la removilización posterior por lluvia del material eruptivo y podrían cortar la carretera Baños-Penipe. En función de la cantidad de material acumulado en las quebradas y de la intensidad/duración de la lluvia, estos lahares podrían ser pequeños a moderados. Este es el escenario eruptivo más probable debido a la ausencia de emisiones de gas, que indicarían que el conducto se encuentra actualmente cerrado.
  • 2) Reactivación paulatina. Durante este escenario de estilo estromboliano, que puede durar desde varias semanas hasta algunos meses, se podría observar explosiones pequeñas a moderadas, fuentes de lava y columnas continúas de ceniza de menos de 6 km sobre el nivel del cráter (ej. Abril-Mayo 2011, Marzo 2013, Abril 2015).  El principal fenómeno que afectaría a la población sería la caída de ceniza, moderada a fuerte, localizada principalmente en la zona occidental del volcán (excepto si se observa un cambio de la dirección del viento). Proyectiles balísticos (bloques y bombas volcánicas) y flujos piroclásticos pequeños podrían alcanzar una distancia de 2,5 km desde el cráter. Lahares secundarios pequeños se podrían formar debido a la removilización por lluvia del material eruptivo y podrían cortar la carretera Baños-Penipe.

Es importante notar que las erupciones volcánicas son por naturaleza impredecibles y que la actividad del volcán también puede regresar a los niveles de base sin que se produzca ninguna erupción.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán y del análisis de los datos provenientes del monitoreo instrumental y visual. El IGEPN mantiene una vigilancia permanente en el centro TERRAS (Quito) y en el Observatorio del Volcán Tungurahua.


SH, SA, AC, MR, JM, PR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Nota aclaratoria
El trabajo realizado durante esta visita al cráter del volcán Guagua Pichincha se realizó por profesionales experimentados bajo normas de seguridad estrictas con equipamiento de protección personal y contacto permanente vía radio con el centro TERRAS del Instituto Geofísico. No se recomienda el descenso al volcán.


Resumen
El miércoles 21 de septiembre del 2016, un equipo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y del Instituto de Investigación para el Desarrollo (IRD, Francia) realizó trabajos geológicos en el cráter del volcán Guagua Pichincha. Los objetivos de la misión fueron: medir la temperatura y la concentración de CO2 en los diferentes campos fumarólicos, muestrear azufre nativo y rocas del domo de la última erupción, y realizar varias fotografías y videos del domo Cristal mediante el uso de un drone.

La temperatura máxima de las fumarolas fue de 86,3°C, medido en la fumarola de muestreo, asociada al sistema hidrotermal del volcán. En general se pudo observar un aumento del CO2 al entrar en las zonas de fumarolas. Sin embargo, en la fumarola llamada “locomotora” se midió un valor anómalo de ~ 65 000 ppm. Es necesario realizar medidas adicionales para confirmar o no la presencia de este gas en altas concentraciones en este sector. Afuera de las zonas de fumarolas, los valores de CO2 están dentro de lo normal. Las fotografías tomadas con drone no revelaron cambios en las estructuras conocidas del volcán.


Recorrido
El grupo salió a las 4h45 de la mañana del Instituto Geofísico en dirección a Lloa y llegó al refugio del volcán Guagua Pichincha a las 6h00. Las condiciones climáticas eran óptimas para realizar el recorrido (Fig. 1). Al domo Cristal se llegó a las 7h30 (Fig. 2). En primer lugar, se trabajó en la fumarola de muestreo (Fig. 3) para instalar el medidor de CO2 y medir la temperatura de la misma. Luego sobre el domo se tomaron imágenes con el drone. A las 10h00 se recuperó el medidor de CO2, y se tomó una muestra de azufre nativo. Se realizó una visita al domo formado en la última erupción en el año 2000. Durante el trayecto se realizaron medidas de CO2 y de temperatura de varias fumarolas. En este domo se tomó una muestra de roca. Se tomaron datos de la fumarola “Locomotora”, pasando por el campo de fumarolas alineadas. (Fig. 2).

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 1. Amanecer visto desde el refugio del volcán Guagua Pichincha; de izquierda a derecha se observan los volcanes: Antisana, Sincholahua, Quilindaña, Pasochoa, Cotopaxi y Rumiñahui. Fotografía: Vásconez F. IG-EPN, 21/09/2016.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 2. Recorrido realizado el 21 de septiembre de 2016 en el volcán Guagua Pichincha. La traza del recorrido está en verde. Los números corresponden a la temperatura máxima medida en cada campo de fumarolas. Los puntos en azul, amarillo, naranja y rojo corresponden a mediciones de CO2.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 3. Izquierda: Cráter del volcán Guagua Pichincha donde se destacan los diferentes campos fumarólicos. Imagen: Cámara GPCAM. Derecha: Fumarolas de muestreo, los gases alcanzan alturas de al menos 10 metros. Fotografía: F. Vásconez IG-EPN, 21/09/2016.

 


Trabajos geológicos
La temperatura fue medida mediante un termómetro datalogger con cuatro canales Omega HH309A con una termocupla tipo K (Fig. 4). El valor máximo obtenido en las diferentes fumarolas alcanzó 86,3°C en la fumarola de muestreo (Fig. 2). Esta temperatura corresponde al punto de ebullición del agua a la altura de las fumarolas (~4050 m sobre el nivel del mar). Las otras fumarolas mostraban temperaturas similares o ligeramente (Tabla 1).

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 4. Medición de temperatura en las fumarolas del Guagua Pichincha. Fotografías: B. Bernard. IG-EPN, 21/09/2016.

 

La concentración de CO2 en las fumarolas fue medida con un sensor experimental prestado por la universidad UCL (University College of London). En general se pudo observar un aumento del CO2 al entrar en las zonas de fumarolas con valores de hasta 818 ppm (valor promedio del CO2 en la atmósfera ~ 400 ppm en 2016, fuente NOAA), las cuales pueden provocar somnolencia. Sin embargo, en la fumarola llamada “locomotora” se midió un valor anómalo de ~ 65 000 ppm, una concentración suficiente para provocar mareo, dolor de cabeza, disfunción visual y auditiva, y hasta pérdida de conciencia si la exposición es prolongada. Es necesario realizar medidas adicionales para confirmar o no la presencia de este gas en altas concentraciones en este sector. Afuera de las zonas de fumarolas los valores de CO2 regresaron a la normal.

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Tabla 1. Temperatura máxima y CO2 en las diferentes fumarolas del domo Cristal. Coordenadas en UTM (WGS84, zona 17 S).

 

Adicionalmente se realizó el muestreo de azufre nativo en la fumarola de muestreo y también de la roca del nuevo domo extruido en la última erupción de 2000.

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 5. Muestreo de azufre nativo y rocas del domo de la última erupción en 2000. Fotografías: F. Vásconez y B. Bernard. IG-EPN, 21/09/2016.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 6. Depósito de azufre nativo en la fumarola de muestreo. Fotografía: B. Bernard, IG-EPN, 21/09/2016.

 


Imágenes con drone
Finalmente se tomaron imágenes con un drone DJI Phantom 2 prestado por el proyecto STREVA. Se pudieron realizar varias tomas de la morfología del domo Cristal en la que se evidencia la actividad superficial y los varios vestigios en la topografía dejado por erupciones pasadas del Guagua Pichincha como son: cráteres de explosión y de impactos de balísticos, zonas de fumarolas, domo de la última erupción entre otros. No se observó cambios morfológicos de las estructuras pre-existentes.

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 7. Fotografía con drone del domo Cristal. Se observa de izquierda a derecha: la fumarola de muestreo, el domo de 2000, el cráter de 1981. Fotografía: B. Bernard, IG-EPN. 21/09/2016.

 

Medidas de temperatura y CO2 de las fumarolas, muestreo y fotografías con drone

Figura 8. Fotografía del domo de 2000. No se observaron cambios morfológicos. Fotografía: B. Bernard, IG-EPN. 21/09/2016.

 

El IG-EPN, junto a otras instituciones, continúa en su labor de monitorizar a los volcanes activos del Ecuador.


BB/FJV/JB
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes
Página 1 de 29