El Cotopaxi es un volcán activo de la cordillera Real ubicado a 60 km al sureste de Quito, 45 km al norte de Latacunga y 75 km al noroccidente de Tena. Está cubierto por un casquete glaciar que alimenta tres sistemas fluviales importantes: R. Pita (Norte), R. Cutuchi (Sur) y R. Tambo y Tamboyacu (Este).
En el período histórico (desde 1532) ha presentado al menos cinco ciclos eruptivos principales (1532-1534, 1742-1744, 1766-1768, 1853-1854 y 1877-1880). Dentro de estos se reconocen al menos 13 erupciones mayores (Hall y Mothes, 2008). Los fenómenos volcánicos asociados a estos fueron: caída de ceniza, pómez y escoria, coladas de lava, flujos piroclásticos y lahares. Estos fenómenos afectaron las zonas pobladas aledañas, causando pérdidas humanas, importantes daños en infraestructuras y generando crisis económicas regionales (Sodiro, 1877; Barriga, 2015).
El monitoreo del volcán Cotopaxi empezó en 1976.
La robusta base de datos del IG-EPN permitió definir un nivel de base de la actividad del volcán (Ruiz et al., 1998) y con ello el IG tiene la capacidad de identificar anomalías en el comportamiento del coloso, como las reportadas en: 2001-2002 (Molina et al., 2008; Hickey et al., 2015), 2005, 2009 y más recientemente en el 2015.
Cronología de la erupción del Cotopaxi “2015”
Desde mediados de abril 2015 se observa un incremento de la actividad sísmica del volcán Cotopaxi. A partir de mayo esa actividad es acompañada de un incremento en las emisiones de dióxido de azufre (SO2) registrado en la red de monitorización (Informe Especial N°2, publicado el 2 de junio de 2015). Adicionalmente, gracias al reporte de varios andinistas y personal del Parque Nacional Cotopaxi (PNC), se reconoce también un incremento en el olor a azufre sobre los 5700 m snm. Todos estos cambios muestran una anomalía persistente en el volcán.
El 11 de junio de 2015, en Informe Especial Nº3, el IG-EPN destaca un incremento de la actividad interna, con la aparición de tremor (vibración del conducto), y externa del volcán (fig. 2). En base a los datos del monitoreo se concluye que lo más probable es que la actividad siga incrementándose, pudiendo incluso producir EXPLOSIONES FREÁTICAS en el cráter.
Gracias a fotografías y videos recuperados de redes sociales del cráter del volcán Cotopaxi, se pudo observar la aparición de una laguna color verdosa (fig. 3). La presencia de este cuerpo de agua en el cráter podría favorecer la ocurrencia de EXPLOSIONES FREÁTICAS advierte el IG-EPN en Informe Especial Nº4 del 7 de agosto de 2015.
El 14 de Agosto del 2015, después de 4 meses de señales premonitores, el IG-EPN reporta la ocurrencia de dos explosiones pequeñas (Informe Especial N°5, publicado a las 06h38), La primera a las 04h02 y la segunda a las 04h07. Estas fueron escuchadas por andinistas que ascendían al volcán. La ocurrencia de explosiones de este tipo fueron señaladas en los Informes Especiales Nº3 y Nº4. Debido a esta actividad se produjó una caída moderada a pequeña de ceniza en los sectores de Jambeli, Machachi, Pedregal, Boliche, Aloag, Tambillo y Amaguaña. Más tarde, a las 10h25 otra emisión de ceniza (entre 6 y 8 km snc), visible desde distintos sitios (fig. 4), dieron lugar a caídas de ceniza hacia el NW y SW del Cotopaxi. Otros eventos explosivos, de menor magnitud a los anteriores ocurrieron a las 13h45 y a las 14h29. Estas emisiones fueron reportadas por la población ya que fueron claramente visibles (Informe Especial N°6). El estudio de la distribución de la caída de ceniza del 14 de agosto permitió calificar la erupción de “pequeña” con un indice de explosividad 1 y una magnitud de 1.2 (Bernard et al., sometido a Bulletin of Volcanology).
En el mismo reporte (Informe Especial Nº6) se resalta que: “el estudio preliminar de la ceniza producida durante estas explosiones sugiere por el momento que estas no estarían asociadas con el magma en profundidad, sino más bien a la sobrepresurización de un sistema hidrotermal menos profundo (aguas subterraneas), que fue sobrecalentado por el magma en las últimas semanas. Este tipo de explosiones son llamadas "FREÁTICAS" y son comunes en las etapas de reactivación de los volcanes. En los informes precedentes (Informe Especial Nº 3 y 4) se había mencionado la posibilidad de ocurrencia de este tipo de explosión, si bien no se podía prever su magnitud”, ni cuando sucederían. Sin embargo el estudio a detalle de la ceniza realizado en el último año permitió identificar un componente magmático lo que permite recalificar estas explosiones como “freatomagmáticas” (Gaunt et al., sometido a Journal of Volcanology and Geothermal Research).
Tras las explosiones del 14 de agosto la actividad del volcán Cotopaxi se caracterizó por la emisión semi-continua a continua de ceniza (material piroclástico; fig. 5). Esta afectó en gran medida la cotidianidad de las poblaciones ubicadas sobretodo al occidente del volcán (dirección predominante de los vientos). En ocaciones, incluso se reportó la caída de ceniza en sectores tan distantes como: Santo Domingo de los Colorados, El Carmen, Quevedo, Portoviejo y Bahía de Caráquez.
La erupción continuó con emisiones de ceniza de menor intensidad hasta el final de noviembre 2015 (Informe Especial N°23, publicado el 9 de diciembre). Adicionalmente, se generaron lahares (flujos de escombros) secundarios que afectarón principalmente el flanco Occidental de volcán y en particular dificultarón el tráfico vehicular en la carretera del PNC en la quebrada Agualongo.
Actividades realizadas por el IG-EPN
Desde el inicio de la reactivación del volcán Cotopaxi en abril 2015, el personal del IG-EPN ha trabajado en 4 ejes principales:
1. Mejoramiento y mantenimiento de la red de monitoreo del volcán Cotopaxi. Antes de la reactivación el volcán ya contaba con una de las mejores redes de monitoreo de Latinoamérica lo que permitió identificar las primeras señales de reactivación del coloso. Sin embargo con el fin de mejorar las capacidades de detección se procedió en instalar nuevas estaciones de monitoreo con instrumentos de última generación con la ayuda del grupo VDAP (Volcano Disaster Assistance Program) del servicio geológico de Estados Unidos (USGS) y de la colaboración japonesa JICA. Adicionalmente, debido a la actividad del volcán y en particular a las frecuentes caídas de ceniza, se necesitó realizar un mantenimiento constante de las estaciones e incluso la reubicación de algunas. Ademas, conjuntamente con el ECU911 y la SGR, se conformó una red de vigías en las comunidades aledañas al volcán para preparar e involucrar a las comunidades en el monitoreo volcánico.
2. Información y capacitación de las autoridades y de la población. A parte de los 28 informes especiales y cerca de 450 informes/noticias diarios publicados desde el 2 de junio de 2015, el IG-EPN se esforzó en informar y capacitar a las autoridades y a la población con decenas de charlas y visitas al campo. El principal objetivo de estas charlas es preparar a la comunidad frente a una posible erupción del volcán e informar sobre las zonas potencialmente afectadas por fenómenos volcánicos, en particular los lahares primarios y las caídas de ceniza.
3. Evaluación de la amenaza volcánica. Antes de la crisis de 2015 el Cotopaxi ya contaba con mapas de amenazas volcánicas para las zonas Norte y Sur. Sin embargo la escala de estos mapas (1/50 000, publicados en 2004) no era suficientamente precisa para las necesidades de la población y de las autoridades. Por lo tanto se realizó nuevos estudios de campo y simulaciones numéricas para actualizar estos mapas con una escala de 1/5 000. Adicionalmente, se realizó el estudio para la zona oriental que no tenia un mapa de amenza y se presentó a las autoridades una versión preliminar en noviembre 2015. Los nuevos mapas para la zona Norte y Sur, escala 1/5 000, serán publicados proximamente.
4. Investigación científica. La crisis del Cotopaxi ha sido una oportunidad para estudiar en detalle el despertar de un volcán y sus primeros productos. La investigación científica es un proceso largo donde los resultados deben ser sometidos a la comunidad científica antes de publicarlos. Al momento el IG-EPN tiene varias publicaciones en el proceso de revisión por pares en diferentes revistas internacionales sobre temas como la dinámica eruptiva (Gaunt et al., sometido a Journal of Volcanology and Geothermal Research), la relación entre las emisiones de ceniza y el tremor sísmico (Bernard et al., sometido a Bulletin of Volcanology), el origen de la deformación observada durante la crisis (Mothes et al., sometido a Journal of Volcanology and Geothermal Research). Estos resultados fueron presentados a la comunidad durante un foro internacional de vulcanología organizado en Sangolqui y Latacunga el 15 y 16 de marzo de 2016. También fueron presentados en congresos nacionales (CAMCA 2016) e internacionales (EGU, AGU, COV9). La investigación científica nos permite entender mejor los procesos volcánicos y por ende nos ayuda a mejorar los escenarios eruptivos y pronósticos para informar adecuadamente a la población.
Un año después de las primeras explosiones, el IG-EPN presenta esta breve reseña sobre cómo fue la reactivación del volcán Cotopaxi desde su inicio, con el fin de recordar a la ciudadanía que vivimos en un país de alto riesgo sísmico y volcánico. El primer paso para la reducción de la vulnerabilidad y consecuentemente del riesgo es conocer los fenómenos, buscando información en fuentes confiables. En momentos de crisis es importante no hacer caso a rumores.
El IG-EPN está continuamente vigilando las variaciones de la actividad en los diferentes volcanes del Ecuador y reportará oportunamente cualquier cambio.
Instituto Geofísico monitoreando la actividad sísmica y volcánica desde 1983.
BB, FJV
Instituto Geofísico
Escuela Politécnica Nacional
El miércoles 3 de agosto del 2016, el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) junto al Instituto Nacional de Meteorología e Hidrología (INAMHI) hicieron la entrega oficial a la comunidad en general y autoridades del “Mapa de Amenazas Potenciales por Lahares Secundarios Quebrada Yambo Rumi del Volcán Chimborazo”, en la parroquia de San Andrés. Hermuy Calle gobernador de Chimborazo, junto a Mario Ruiz, viceministro de la SGR y Pablo Morillo, Coordinador Zonal 3, presidieron la sesión del Comité de Operaciones de Emergencia provincial (COE).
Entre diciembre 2015 y abril 2016 al menos 4 lahares secundarios han sido reportados en la quebrada Yambo Rumi al suroriente del volcán Chimborazo amenazando a varias comunidades y destruyendo zonas de cultivo y ganadería, vías de comunicación, un tramo de la vía del tren de Hielo y el tramo 146,5 del poliducto de PetroEcuador.
En la sesión intevinieron el Msc. Bolívar Cáceres, experto glaciólogo del INAMHI, quién expuso sobre la evolución de los glaciares del Chimborazo, destacando que el glaciar se ha reducido en un 69% en área en comparación a 1962, siendo el área actual de 8,5 km2.
Por otra parte, el Ing. Francisco Vásconez, la contraparte técnica del Instituto Geofísico, explicó cual fue la metodología usada para la evaluación de la amenaza y la elaboración del mapa correspondiente. Vásconez señaló que los lahares más grandes han tenido un volumen entre 300 mil y 700 mil m3 (≈30 mil a 70 mil volquetas llenas de material petreo) y un caudal pico de entre 100 y 150 m3/s. Además, enfatizó que no existe un incremento en la actividad interna del volcán, por lo que se puede descartar este factor como un agente desencadenante de estos fenómenos. También explicó que la ceniza del volcán Tungurahua, 40 km al occidente del Chimborazo, en erupción desde 1999 podría ser también responsable de la reducción de los glaciares del Chimborazo debido a que el depósito de ceniza sobre el glaciar puede producir un cambio en el albedo (porcentaje de radiación de el glaciar refleja). Particularmente, el periodo eruptivo de noviembre del 2015 (un mes antes de la ocurrencia de los primeros lahares) fue una de las erupciones con mayor emisión de ceniza (80-160 g/m2 sobre el glaciar) desde que se tiene registro de alta precisión de este fenómeno (2010).
Vásconez resaltó los resultados encontrados por el Dr. Luis Maisincho, experto meteorólogo del INAMHI, quien encontró que el 2015 fue el segundo año más caliente en el registro (2005-2015), año que además estuvo marcado por la ocurrencia del fenómeno de El Niño, presente en Ecuador desde junio. El Niño amplifica los efectos adversos del clima sobre los glaciares. Esta perturbación provocó que el 2015 presente máximos inéditos en las series climáticas registradas a 4900m de altura desde hace 11 años. El incremento de temperatura sobre la superficie de nieve/hielo provoca el derretimiento acelerado del casquete glaciar (incremento en la tasa de fusión), por tanto, mayor cantidad de agua líquida saliendo del mismo.
De manera general se concluye que el origen de los lahares se debe al deshielo de los glaciares del Chimborazo, acelerados por el Calentamiento Global, el fenómeno de El Niño presente desde junio 2015 y la ceniza del Tungurahua, particularmente los periodos de noviembre 2015 y febrero-marzo 2016. El derretimiento abría dado lugar a la formación de varias lagunas superficiales e intraglaciares (bolsones de agua en el interior del glaciar y/o hielo muerto) que al acumular mucha agua se abrían desbordado y/o colapsado proporcionando grandes cantidades de agua en un tiempo corto dando lugar a la formación de estos lahares secundarios.
El derretimiento acelerado de los glaciares del Chimborazo aumenta la probabilidad de generar nuevos lahares secundarios, no sólo en la quebrada Yambo Rumi, sino también en otras quebradas alrededor del volcán. Sobrevuelos al volcán son esenciales para identificar estas zonas, resaltó Vásconez.
Hermuy Calle, destacó “La importancia del trabajo realizado por todas las instituciones técnicas, que ejecutaron las investigaciones necesarias para brindarnos estos insumos, que se han convertido en una herramienta de trabajo indispensable para todos y que también nos permitirá direccionar acciones importantes a favor de las personas que habitan en las zonas de riesgo”.
Finalmente, el COE planteó dos resoluciones generales: La Secretaría de Gestión de Riesgos (SGR) compartirá los mapas de amenazas con todas las instituciones que forman parte del COE provincial y las entidades que presten servicios o que tengan infraestructura en las zonas de posible afectación por lahares secundarios. Adicionalmente se deberán actualizar los planes de contingencia en base a los mapas.
FJV, SH, ET
Instituto Geofísico
Escuela Politécnica Nacional
Disminución de actividad sísmica
RESUMEN
El 5 de junio del presente año se registró un incremento en el número de eventos sísmicos tipo VT (generados por fracturamiento de rocas). Al momento esta actividad sísmica tiende a disminuir progresivamente llegando a niveles considerados como normales para este volcán. Cabe indicar también que no hay cambios en la deformación ni en la emisión de gases. Se considera entonces que esta anomalía no involucró un ascenso de magma y que el volcán está retomando sus niveles de actividad de base.
INTRODUCCION
El 15 de junio del presente año, el Instituto Geofísico en el Informe Especial Volcán Cayambe N.- 1, reportó la ocurrencia de una anomalía sísmica en dicho volcán. Posteriormente a este informe, el Instituto Geofísico ha trabajado en el análisis de los datos sísmicos y en el incremento de la capacidad de vigilancia instrumental instalada en la zona.
El Cayambe es un volcán activo. Posee un casquete glaciar sobre los 4800 m. El volcán se ubica a 15 km al oriente de la ciudad de Cayambe y los ríos que nacen de sus flancos cruzan el Valle Interandino alimentando al río Guayllabamba y otros se dirigen hacia el Oriente y desembocan en el río Quijos. El volcán Cayambe ha tenido al menos 21 eventos eruptivos en los últimos 4000 años (Samaniego et al. 1998). En base a los estudios geológicos, estadísticamente el volcán Cayambe tiene un periodo de recurrencia de erupciones de aproximadamente 200 años. Su último periodo eruptivo data de 1785-1786.
La red de monitoreo de este volcán está compuesta por 3 estaciones sísmicas, 1 estación inclinométrica, 1 GPS y 1 estación de medición de SO2. El monitoreo especialmente sísmico se inició en 1995 y los datos de estas estaciones llegan a tiempo real al IG-EPN.
ACTIVIDAD SÍSMICA
La figura 2 muestra una actualización de la actividad sísmica registrada en las últimas semanas, en ella se observa claramente una disminución en el número de eventos sísmicos, llegando a los niveles de base para el Cayambe, establecidos desde el año 1995, fecha en que se instaló la primera estación sísmcia en el volcán.
La secuencia de eventos registrada en junio responde a lo que se denomina un enjambre sísmico, es decir no existe un evento de magnitud mayor alrededor del cual se generen eventos más pequeños. En este periodo se contabilizaron 2300 sismos, siendo este el número más grande de eventos registrado en este volcán desde que se tiene monitoreo sísmico (Figura 3).
En la figura 4 se muestra la localización de los eventos tipo VT registrados en Junio e inicios de Julio, en donde se mantiene la concentración de sismos al noreste del volcán, similar a lo reportado en el informe anterior.
En la figura 5 se observa un ejemplo de estos sismos volcano tectónicos.
DEFORMACION
El procesamiento de los datos de la estación CYMI con datos de los últimos días indica que no hay deformación relacionada con el volcán (Figura 6).
INTERPRETACION
La actividad sísmica observada en Junio presenta características propias de un enjambre. Tomando en cuenta este hecho y la vecindad con un volcán activo como el Cayambe, se considera que este enjambre tiene un origen en un incremento puntual de presiones en el interior del volcán. El número de sismos ha regresado a los niveles previos y no se han observado anomalías geoquímicas o de deformación de los flancos. Se considera entonces que esta anomalía no involucró un ascenso de magma y que el volcán está retomando sus niveles de actividad de base.
MP/MR/AA/PC
Instituto Geofísico
Escuela Politécnica Nacional
La actividad superficial del volcán El Reventador durante los últimos meses se ha mantenido como alta. Durante los trabajos de mantenimiento de la red de monitoreo, entre el 08 al 10 de junio del 2016 personal del Instituto Geofísico evidenció la alta actividad eruptiva en el volcán.
Existe una salida continua de gases volcánicos y vapor de agua (altura de la pluma hasta 800m s.n.c. con dirección NW) como lo que se ve en la Figura 1.
Las explosiones producidas son moderadas, con acústica similar a cañonazos audibles al pie del volcán, y generan columnas de emisión de alrededor de 2 km de altura sobre el nivel del cráter con presencia de carga moderada de ceniza.
Estos eventos explosivos están siendo recurrentes en el volcán, como se puede evidenciar en el sismograma correspondiente al día 09/06/2016.
Los depósitos generados debido al descenso de flujos piroclásticos asociados a la actividad explosiva alta del volcán, son claramente visibles, así como el descenso de bloques incandescentes expulsados en las explosiones. Este fenómeno es registrado en todos los flancos del volcán, principalmente en el flanco sur y el flanco norte del edificio. (Figura 1).
La vegetación al interior de la caldera, en el sector oriental y nororiental muestra la presencia de ceniza fina, gris. Debido que el viento moviliza la ceniza de la columna de emisión (Figura 3).
La actividad del volcán el Reventador se mantiene en niveles altos, con permanentes explosiones, recurrentes flujos piroclásticos y emisión con carga moderada de ceniza que se dispersa hacia los alrededores del volcán sin que se produzca gran impacto en las zonas pobladas aledañas al volcán.
GV, MFN
Instituto Geofísico
Escuela Politécnica Nacional
Anomalía en la actividad sísmica
RESUMEN
Desde la primera semana del mes de Junio se observó una anomalía sísmica en el volcán Cayambe, la misma que se hizo más evidente a mediados del mes, pero que al momento tiende a disminuir. Sin embargo, es necesario indicar que esta anomalía sísmica es la más intensa registrada desde el año 1995.
Los eventos sísmicos están relacionados al fracturamiento de rocas y se ubican en el extremo nor-oriental del edificio. Estas características permiten calificar a estos eventos como sismos volcano-tectónicos distales. Este tipo de sismos se dan en las zonas de falla cercanas a volcanes. En el caso del volcán Cayambe, el sistema de fallas Chingual pasa por esta zona.
Los datos de las redes GPS e inclinómetros instaladas en el volcán no muestran evidencias de deformación en el edificio volcánico.
INTRODUCCION
El volcán Cayambe es un volcán activo ubicado en la parte norte de la Cordillera Real del Ecuador, a 60 km al nororiente de Quito y a 15 km al oriente de la ciudad de Cayambe (20.000 habitantes). Su parte somital está formada por un complejo de domos, entre los cuales se destaca la cumbre occidental con una altura máxima de 5790 m. Posee un casquete glaciar que se inicia alrededor de los 4800 m, con un área aproximada de 22 km2.
En los últimos 4000 años se han identificado al menos 21 eventos eruptivos de los cuales el más reciente se dio entre 1785-1786 (Samaniego et al. 1998). En base a los estudios geológicos, estadísticamente el volcán Cayambe tiene un periodo de recurrencia de erupciones de aproximadamente 200 años.
ACTIVIDAD SÍSMICA
La figura 1 se muestra la sismicidad mensual desde 1995 hasta junio 2016. La actividad de base está compuesta por eventos asociados al movimiento de fluidos del tipo de Largo Periodo (barras azules), que son comunes en volcanes activos. Entre diciembre 2001 y enero 2002, se sumaron a estos sismos de tipo LP (largo periodo), sismos asociados al fracturamiento de rocas, denominados volcano tectónicos (barras de color rojo). Posteriormente se produjeron otros episodios de este tipo, pero de menor intensidad, el más reciente ocurrió durante septiembre del año 2005, posterior a lo cual la actividad sísmica retornó al nivel de base.
Desde el 6 de junio de 2016 se observó un nuevo incremento en la sismicidad correspondiente a eventos de fractura (volcano-tectónicos, VT) (barras de color rojo), tal como se observa en la figura 2. Este nuevo incremento alcanzó un pico importante entre el 12 y 13 de junio, muy por encima de lo observado en el 2001-2002. A partir de estas últimas fechas la actividad comenzó a disminuir nuevamente, pero se mantiene sobre el nivel base establecido desde 1995 para este volcán.
Los eventos tipo VT registrados en este mes han sido localizados y muestran una concentración de al noreste del volcán (Figura 3).
DEFORMACION
En la estación GPS de Cayambe ubicada al oeste del volcán (CYMI), en el periodo comprendido entre el 2 al 11 de Junio del 2016 no hay cambios en la señal que muestra deformación, tal como se observa en la figura 4. El cambio que se marca en rosado en la figura corresponde al efecto co-sísmico y post-sísmico del terremoto del 16 de Abril del 2016.
Para las otras estaciones GPS cercanas a Cayambe como Ibarra, Cuicocha, Salvefacha y Lumbaqui tampoco se observa ningún cambio.
CONCLUSIONES
La localización de estos sismos hacia el límite noreste del edificio volcánico, permite considerarlos como un enjambre sísmico de eventos Volcano-Tectónicos distales. Estos pueden ser causados por cambios en el estado de esfuerzos en el interior del volcán y pueden afectar zonas aledañas, en especial aquellos lugares en donde existen fallas. Este es el caso de este enjambre, ya que uno de los segmentos del sistema principal de fallas Chingual, pasa por este sector. Hay que resaltar también que hasta el momento no hay evidencias de deformación en el edificio volcánico que pudiesen indicar la presencia de una intrusión magmática.
El Instituto Geofísico continúa con el monitoreo de este volcán y cualquier cambio en su actividad será informado.
MP/FV/MR/PJ/BB/PC/AA/SH
Instituto Geofísico
Escuela Politécnica Nacional
En respuesta a la preocupación de los guardaparques y moradores del sector, quienes han reportado la existencia de zonas con fuertes emisiones de gas. Un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) partió este jueves 02 de junio de 2016 rumbo al Complejo Volcánico Pululahua.
El personal del IG se dirigió a la zona del cráter, ubicada al nor-occidente de San Antonio de Pichincha. Allí los técnicos efectuaron mediciones de parámetros físico-químicos, muestreo de aguas y medición de emisiones de CO2 (figura 1).
Es necesario remarcar que los fluidos (gases y agua), liberados desde el sistema hidrotermal de un volcán, a menudo revelan cambios en su comportamiento, es por eso que deben ser monitorizados con cierta periodicidad.
Los técnicos utilizaron el Instrumento LI-COR para determinar la concentración de CO2 emanado desde el suelo (figura 2). Adicionalmente en las zonas de emisión de gas se encontraron animales muertos (raposas y aves pequeñas), que al estar sometidos a éstas grandes concentraciones de CO2, sufren asfixia (figura 3). Los comuneros, quienes aseguran que este fenómeno ha estado presente desde hace muchos años, han cercado estas zonas, evitando así que la vida de los seres humanos y del ganado corra peligro.
Los técnicos del IG realizaron también mediciones de pH, conductividad y temperatura en la fuente del Pailón. Así mismo se recolectaron muestras de agua que posteriormente se analizarán en el laboratorio del Centro de Investigación y Control Ambiental (CICAM) de la EPN (figura 4).
El Instituto Geofísico de la Escuela Politécnica Nacional hace extenso un cordial agradecimiento al personal de de la reserva ecológica Pululahua en especial a los Srs: Byron Lagla, Jofrey de la Cruz, Raúl Santillán y a los moradores del sector destacando al Sr. Humberto Moromenacho, quienes hicieron el papel del guías y acompañaron a los técnicos del IG para que pudieran realizar adecuadamente el trabajo de campo.
Los resultados de los análisis están siendo procesados y un informe técnico será emitido en los próximos días.
FV, DS, SH
Instituto Geofísico
Escuela Politécnica Nacional
Actualización de la actividad del volcán y análisis de la posibilidad de reactivación a mediano plazo (semanas a meses)
Resumen
El volcán Tungurahua ha mantenido una actividad superficial baja desde su última erupción (26/02-15/03/2016). Su actividad sísmica y de desgasificación se ha mantenido en los niveles de base, excepto por un pequeño enjambre de eventos sísmicos de Largo Periodo (LP's) ocurrido entre el 1 y el 20 de mayo asociado a movimientos de fluidos. Sin embargo, las observaciones de la deformación muestran una intrusión magmática desde el final de la última erupción.
En los últimos 8 años el volcán Tungurahua ha mostrado de manera repetitiva estos periodos de aparente quietud y las reactivaciones después de estos han presentado señales premonitoras claras a corto plazo (horas a días) en solo el 20% de las veces. En base a eso y al tiempo de reposo que ha tenido el volcán hasta ahora (79 días), se estima que una reactivación del Tungurahua a mediano plazo (semanas a meses) es probable y se define dos escenarios eruptivos potenciales: 1) una reactivación paulatina, de estilo estromboliana, con principalmente caída de ceniza que corresponde al escenario más probable; 2) una reactivación rápida, de estilo vulcaniana, con una gran columna eruptiva y flujos piroclásticos. Estos escenarios están detallados al final de este documento. El objetivo de este informe es prevenir oportunamente a las autoridades y la población de la posibilidad de una erupción del Tungurahua a mediano plazo (semanas a meses).
Sismicidad
En los últimos meses, después de la última erupción, se observa una baja actividad sísmica en general (Fig. 1), registrándose diariamente menos de 2 sismos de tipo Volcano-Tectónico (VT), sin explosiones ni tremor de emisión. Entre el 1 y el 20 de mayo de 2016 se registró un pequeño enjambre de sismos de tipo Largo Periodo (LP). Estos enjambres son comunes en periodos de quietud y son asociados a movimientos de fluido dentro del edificio volcánico.
Deformación
La estación inclinométrica de Retu (Refugio Tungurahua) ubicada al norte del cráter muestra una clara tendencia inflacionaria (ver dirección de la flecha en la Fig. 2) desde el final de la última erupción tanto en el eje radial (~600 μrad, microradianes) como en el eje tangencial (~200 μrad). Esta tendencia se observa también en el eje tangencial del inclinómetro de Mndr (Mandur, flanco Noroccidental) pero con una amplitud mucho más pequeña (~30 μrad) debido probablemente a una mayor distancia entre el instrumento y la fuente de presión. En las otras estaciones de la red de inclinometria no se observa un patrón de deformación evidente. Sin embargo es destacable que con la finalización del último periodo eruptivo, el sensor de Retu empezó de registrar evidencias de movimiento de magma.
Emisión del SO2
No se observa mayor cambio en la desgasificación desde el fin de la última fase eruptivo tanto para el flujo diario máximo de SO2 (Fig. 3) como para el número de medidas válidas (Fig. 4). Los dos indicadores se encuentran en el nivel de base.
Observaciones visuales
Durante los últimos dos meses, las condiciones de observación visual han sido variables. La actividad superficial, cuando el volcán estuvo despejado, se caracterizó por actividad fumarólica de baja intensidad y una ausencia de emisiones de ceniza desde el fin de la última erupción (Fig. 5).
Interpretación
En los últimos 8 años de actividad el volcán Tungurahua ha tenido 15 periodos de quietud similares al periodo actual con una actividad sísmica baja, una deformación con tendencia inflacionaria, y una actividad superficial caracterizada por fumarolas de baja energía por más de un mes. En su mayoría estos periodos de quietud fueron seguidos por erupciones de tamaño pequeño (Índice de Explosividad Volcánica IEV 0-1 con principal fenómeno las caídas de ceniza) y en algunas veces por erupciones más grandes (IEV 2 con flujos piroclásticos). Es importante notar que la gran mayoría (80%) de estas erupciones no tuvieron señales premonitoras de reactivación a corto plazo (horas a días). La deformación actual del volcán es una evidencia de intrusión magmática (movimiento de magma a partir de un reservorio más profundo) que se ha observado en muchas ocasiones antes de las erupciones del Tungurahua. La baja desgasificación podría indicar un taponamiento del conducto que impide el paso libre de los gases magmáticos. Tomando en cuenta que el periodo actual de quietud ha sobrepasado dos meses (78 días) se estima que una reactivación a mediano plazo (próximas semanas a meses) es probable.
Escenarios eruptivos
En base a los resultados del monitoreo volcánico y en la historia reciente de reactivaciones del Tungurahua se propone dos escenarios eruptivos que podrían ocurrir a mediano plazo (próximas semanas a meses):
Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán y del análisis de los datos provenientes del monitoreo instrumental y visual. El IGEPN mantiene una vigilancia permanente en el centro TERRAS (Quito) y en el Observatorio del Volcán Tungurahua.
BB-PM-VL-SA-DS-SH
Instituto Geofísico
Escuela Politécnica Nacional
Personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), realizó trabajo de campo entre el 18 y 20 de mayo de 2016 en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo. En este sector varios flujos de lodo y escombros han afectanto a la comuna de Santa Lucia de Chuquipogyo (Parroquia de San Andrés-Cantón Guano), siendo el mayor de ellos el ocurrido el 29 de abril de 2016.
Durante estos días se recorrió gran parte de la quebrada Yambo Rumi, con el fin de obtener datos de la magnitud de los eventos que están ocurriendo en la zona y de calibrar los primeros modelamientos numéricos cuyo objetivo es obtener un mapa de amenaza en el corto y mediano plazo.
El día 18 se recorrió los sectores desde Santa Lucia hasta San Andrés, en el recorrido se pudo apreciar bloques de gran tamaño (hasta 3 metros de diámetro) que descendieron de las partes altas y que se depositarón en la zona del poliducto (puente de piedra de Santa Lucia), así también se pudo observar que en ciertas zonas el flujo de lodo sobrepaso el borde de la quebrada (cauce natural), provocando el desborde de la misma y con ello cubriendo ciertos tramos de las carreteras, puentes y sembríos. A medida que se desciende en altitud se aprecia como el flujo de lodo va disminuyendo en cuanto a los tamaños de grano desde bloques de varios metros en la parte alta hasta granos tipo arena y limo en la zona baja.
El día 19 se recorrió las partes altas de la quebrada desde el sector de Fruta Pampa hasta Santa Lucia, donde se pudo observar que el flujo de lodo habia socavado la quebrada varios metros en ciertos lugares haciendose más profunda y ancha ya que el material del talud es fácilmente erosionable (incluso por la acción de los fuertes vientos). En la planicie de Fruta Pampa el flujo de lodo en su parte más ancha sobrepasa los 220 m.
El día 20 se inspeccionó otras dos zonas muy cerca a Santa Lucia de Chuquipogyo, donde el flujo se desborda cubriendo grandes extensiones (más de 200 m de ancho), enterrando la vegetación y afectando los sembríos y construcciones que se encontraba a su paso, la parte más diluida del flujo (material fino) incluso ingresó a unas cuantas viviendas y así también dañando vías de acceso y de comunicación entre la población.
El trabajo realizado cosntituye una primera fase de calibración de los diferentes modelos numéricos aplicados para determinar las potenciales áreas de inundación por flujos de lodo y escombros, que al corto y mediano plazo permitirán la elaboración de un mapa de amenaza por lahares secundarios para la quebrada de Yambo Rumi. El Instituto Geofísico (IG-EPN), INAMHI y SGR mantendrá informada a la comunidad sobre los avances realizados en este estudio.
ET, FJV
Instituto Geofísico
Escuela Politécnica Nacional
Como parte del monitoreo que el Instituto Geofísico de la Escuela Politécnica Nacional realiza en los volcanes del Ecuador, personal del IG efectuó mediciones de parámetros físico-químicos y muestreo de aguas en las fuentes termales en el Complejo Volcánico Pichincha.
Un grupo de técnicos del IG partió este lunes 16 de Mayo de 2016 rumbo a la zona de Palmira, ubicada al Suroeste del cráter del Guagua Pichincha. Se realizó un reconocimiento y un muestreo en dos fuentes de aguas termales en los balnearios de Palmira y Las Acacias.
Los fluidos (gases y agua) liberados desde el sistema hidrotermal pueden revelar cambios en el comportamiento de los volcanes, es por eso que éstos que deben ser monitorizados con cierta periodicidad.
Los técnicos del IG realizaron mediciones de pH, conductividad y temperatura. Así mismo se recolectaron muestras de las aguas que posteriormente se analizan en el laboratorio del el Centro de Investigación y Control Ambiental (CICAM) de la EPN. Además se utilizó un instrumento que permite medir el flujo de CO2 difuso en ambas fuentes termales.
DS, SH, FV
Instituto Geofísico
Escuela Politécnica Nacional
Actividad explosiva sostenida
Al inicio del mes de Marzo el volcán Sangay empezó un nuevo pulso de actividad, la cual se mantiene hasta la actualidad sin variaciones significativas. La actividad sísmica (Figura 1) asociada a movimientos de fluidos, tremor (TR) y eventos de largo período (LP), fue ligeramente mayor durante el mes de Marzo, comparada con la que se ha desarrollado durante el mes de Abril y lo que va de Mayo. Por otro lado, el número de explosiones durante Abril y Mayo es ligeramente mayor al registrado en Marzo. Debido a que el número de eventos asociados a fracturas, híbridos (HB) y volcano-tectónicos (VT), es escaso, el proceso está claramente dominado por desplazamiento de fluidos.
La actividad superficial está caracterizada por explosiones frecuentes (Figura 1) que generan columnas de emisión, visibles bajo condiciones climáticas favorables (Figura 2). Las Figuras 3 y 4 muestran dichas explosiones en un día típico de actividad. En general se puede decir que desde mediados de Marzo la explosividad domina la actividad sísmica del volcán (en la Figura 1 compárese EXP y total).
La actividad superficial también ha sido detectada por el satélite del proyecto Mirova (Figura 5) que reporta anomalías térmicas en los flancos del volcán, la mayoría de ellas a un radio menor a 5 km de la cumbre. La intensidad de dichas anomalías es moderada y podría corresponder a flujos piroclásticos de corto alcance producidos durante las explosiones y a flujos de lava.
Los instrumentos satelitales OMI y OMPS, que proveen información sobre las emisiones de SO2, no han reflejado ninguna anomalía asociada al Sangay. Esto permite concluir que la emisión de este gas no supera el límite de detección de dichos instrumentos y por lo tanto se la puede considerar como mínima.
En conclusión, los pasados dos meses el volcán Sangay muestra actividad explosiva sostenida. Dichas explosiones posiblemente han generado balísticos y flujos alrededor de la cumbre. Por este motivo se recomienda enfáticamente a la ciudadanía evitar acercamientos a los flancos o ascensos al volcán.
PP, MO, FV, SH, PR.
Instituto Geofísico
Escuela Politécnica Nacional
© 2025 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847