Pequeñas Explosiones y Escasa Emisión de Ceniza  

Resumen
Durante la última semana en el volcán Cotopaxi se han producido principalmente columnas de vapor de agua y gases, de color blanco que llegaron hasta 1 a 2 km de altura sobre el nivel del cráter.  La presencia de ceniza ha sido mínima, excepto por caídas esporádicas que se depositaron en los flancos superiores.  Se contabilizaron entre 30 a 50 sismos volcano-tectónicos (VT) por día, lo cual representa una disminución en la tasa comparada con semanas anteriores. La mayoría de estos eventos tipo VT son de magnitudes bajas.  Ocasionalmente han ocurrido pequeñas explosiones, cuyas ondas acústicas fueron detectadas solo por la red de sensores de infrasonido en el volcán.   Ninguna de estas explosiones fue percibida por las poblaciones aledañas. Los niveles del gas SO2 fueron entre 2000 a 5600 ton/día.  Al momento la actividad del volcán está circunscrita a lo indicado en el Escenario “1” descrito en las actualizaciones previas y al final de este documento.  Este escenario prevé que el volcán continuará produciendo emisiones, posiblemente explosiones ocasionales de tamaños pequeños a moderados y lahares secundarios que quedan dentro del Parque Nacional Cotopaxi.


Observaciones visuales
Las condiciones de observación visual han sido buenas.  Con frecuencia se observaron columnas blancas de vapor con baja a moderada fuerza asciendo hasta 1-2 km de altura sobre el nivel del cráter (Fig. 1).

Informe Especial Cotopaxi N. 21 - 2015

Figura 1. Vista del flanco oriental del volcán Cotopaxi y su columna de vapor, gases y escasas cenizas, tomada desde un avión a las 08h45TL el 26 de Octubre, 2016.  Foto: Andrea Jiménez Trujillo.


Sismicidad
Durante la última semana, la actividad sísmica total del volcán Cotopaxi ha tenido una leve disminución si se compara con las semanas anteriores (Tabla 1, última columna).  La sismicidad se caracterizó por la presencia esporádica de señales sísmicas asociadas a las emisiones, llamadas tremores de emisión (Fig. 2) y por la generación de sismos volcano-tectónicos (VT) que llegaron a presentar un promedio de 40 a 50 eventos/día (Fig. 3).

Informe Especial Cotopaxi N. 21 - 2015

Tabla 1. Número de eventos sísmicos en categorías registrado por la red de sismógrafos del IGEPN durante el mes de Octubre, 2015.

Informe Especial Cotopaxi N. 21 - 2015

Figura 2: Número de episodios de  tremor de emisión desde Agosto, 2015.  Se nota que desde la tercera semana de Octubre hubo una marcada disminución de estas señales.

Informe Especial Cotopaxi N. 21 - 2015

Figura 3. Número de sismos volcano-tectónicos desde el 01 de Agosto, 2015.  Se observa una leve disminución de estos eventos en la última semana, pero aún se tiene un promedio de 40-50 VTs/día.

Las magnitudes de los VTs son generalmente menores a 1, sin embargo se registraron eventos con magnitud 2.7 el 14 de octubre (Fig. 4).  

Informe Especial Cotopaxi N. 21 - 2015

Figura 4. Magnitudes de los eventos volcano-tectónicos desde el 01 de Abril, 2015 hasta el presente.  Se observa una leve disminución de las magnitudes de los eventos ocurridos en las últimas semanas.

Casi todos los eventos sísmicos se ubican bajo la cumbre o a poca distancia de la misma, a profundidades de 2 a 12 km bajo la cumbre (Fig. 5).

Informe Especial Cotopaxi N. 21 - 2015

Figura 5. Localizaciones de los eventos ocurridos en el volcán Cotopaxi entre el 01 y el 27 de Octubre, 2015.  La gran mayoría de eventos localizados corresponde a sismos de tipo volcano-tectónicos (VT, triángulos azules) y unos pocos LP (círculos rosados). Todos los eventos se sitúan aproximadamente debajo del cráter del volcán, a profundidades de menos de 12 km (aunque la mayoría está a menos de 9 km debajo el cráter).

Igual como en semanas anteriores la energía asociada a la actividad no ha experimentada alzas significativas en las últimas semanas y se queda ligeramente sobre los niveles del fondo (Fig. 6).   También han ocurrido ocasionalmente explosiones pequeñas (Fig. 7).

Informe Especial Cotopaxi N. 21 - 2015

Figura 6. Energías relativas de la energía sísmica liberada desde el 01 de Enero, 2015 hasta el presente.  Se observa una leve y progresiva disminución ocurrida en las últimas semanas, la cual está influenciada por la pequeña actividad de los tremores de emisión.

Informe Especial Cotopaxi N. 21 - 2015

Figura 7. Registro de explosiones que fueron registradas en el volcán Cotopaxi.  Son de tamaño pequeño y no han sido percibidas por la población aledaña.

Informe Especial Cotopaxi N. 21 - 2015

Figura 8. Registro en la estación sísmica banda ancha (panel superior) y de infrasonido (panel medio), de una explosión que ocurrió al 24 de Octubre, 2015, a las 08h49TU en el volcán Cotopaxi.  Es de tamaño pequeño y no fue percibida por la población aledaña.


Deformación
La estación inclinométrica de VC1 (flanco NE) continúa con la misma tendencia que sus ejes han presentado en el transcurso del último mes, que coincide con la disminución de sismos, en especial los de tipo VT. (Fig. 9). La magnitud de deformación compuesta, registrada por esta estación se mantiene estable durante este período. En forma general, la deformación es menor en comparación a meses anteriores.  El nivel de deformación sigue bajo, con respecto a patrones de deformación registradas antes de erupciones en otros volcanes.

Informe Especial Cotopaxi N. 21 - 2015

Figura 9.  Deformación registrada en la estación inclinométrica VC1 en comparación al número de eventos sísmicos. Desde mediados de septiembre, la tendencia de deformación neta se mantiene estable, ni ascendente ni descendente.


Emisión del SO2
La figura 10, muestra los valores de flujo de SO2 obtenidos por la red permanente de DOAS desde el 01 de enero, 2015 (Fig. 10).  A partir del 17 de Octubre, los valores máximos han variado entre 450 a 6600 ton/día (Fig. 11).

Informe Especial Cotopaxi N. 21 - 2015

Figura 10.  Los valores del SO2 (dióxido de azufre) desde el 01 enero, 2015

Informe Especial Cotopaxi N. 21 - 2015

Figura 11.  Los valores máximos del SO2 (dióxido de azufre) han variados desde 450 a 6600 ton/día entre el 17 a 23 de octubre, 2015


Caída de ceniza
La última caída de ceniza fue reportada por los vigías y publicada en nuestro informe del 19 de Octubre.  Se reportó que hubo leves caídas en los sectores de Aloasí, Aloag, Jambelí, El Chaupi y Tanicuchi, o sea, mayormente en una zona al NE y al W del volcán.    Posteriormente, en las noches despejadas del 25 y 26, con la ayuda de una cámara térmica del IGEPN, se pudo observar brillo al nivel del cráter, que es el resultado de la reflexión de la irradiación en los gases que salen del cráter.  

Las cenizas que fueron re-colectadas el día 20 de octubre contiene las caídas de ceniza ocurridas desde inicios de mes (Fig. 12) tienen una alta concentración de componentes densos como microlitos y cristales libres.  Hay poca presencia de clastos vesiculados (tipo escoria o pómez) que podrían ser considerados como una señal de magma juvenil.

Informe Especial Cotopaxi N. 21 - 2015

Figura 12. Vista de las partículas de ceniza recolectadas en el flanco W  del volcán Cotopaxi.  La imagen es ampliada con un microscopio de barrido electrónico (SEM).  Se nota la alta concentración de cristales, microlitos y pocos componentes vesiculados (juveniles frescos).  Estos componentes son casi idénticos a los vistos en semanas anteriores.  Imagen por Elizabeth Gaunt-IGEPN.


Interpretación
Los datos de monitoreo obtenidos entre el 20 hasta el 27 de octubre indican que hay una continuación con las características propias del escenario “1” propuesto en las actualizaciones anteriores. La presencia de un nuevo pulso de magma entrante al sistema que fue identificado por los VTs en semanas anteriores y ahora por los incrementos en los valores del SO2 ha tenido leves manifestaciones superficiales, como son el brillo en el cráter, leves emisiones e ceniza y ligeras explosiones.  Estas manifestaciones son coherentes con el emplazamiento de un volumen pequeño de magma nuevo, que ha causado solo muy tenues cambios en los flancos del volcán y que las cenizas que han sido emitidas no son el producto todavía de un magma juvenil vesiculado que se haya fragmentado.  El magma en el tope del sistema está en el proceso de desgasificación en niveles entre 1-3 km bajo al nivel del cráter. Las explosiones esporádicas que se registran son el resultado de acumulaciones superficiales de gas magmático y vapor de agua que se libera cuando la presión interna sobrepasa la resistencia del obstáculo en el conducto.  El IGEPN está muy atento de cualquier cambio en las condiciones presentadas por el volcán.

Dentro del escenario “1” se podrían producir los siguientes fenómenos:
- continuación de la emisión y consecuente caída de ceniza.
- explosiones pequeñas a moderadas con bloques incandescentes limitados a zonas cercanas al cráter.

En este escenario no se considera probable la generación de lahares de tamaño moderado ni grande, pero sí, posiblemente la generación de lahares secundarios pequeños asociados a la removilización de la ceniza debido al deshielo del glaciar y a lluvias en las partes altas del edificio volcánico.


Escenarios
Al momento, como se ha indicado, el volcán presenta una actividad circunscrita dentro del escenario “1” (detallado nuevamente a continuación). Sin embargo, debido a que los sistemas naturales pueden presentar cambios en el corto plazo no podemos descartar como posibles los demás escenarios para los próximos días a semanas (en orden del más probable al menos probable:

  • Escenario 1) el nuevo pulso de magma llega lentamente al reservorio y tiene paso libre hasta la superficie. En este caso, la actividad eruptiva aumenta progresivamente, con ocurrencia de emisiones de ceniza seguidas por pequeñas explosiones. El proceso eruptivo se prolonga por semanas hasta agotamiento de la energía de este pulso de magma (tipo Tungurahua marzo 2013). Este tipo de fases eruptivas puede repetirse si la alimentación en magma se mantiene en el mismo nivel. Las caídas de ceniza son leves a moderadas en las direcciones predominantes del viento con una acumulación de hasta pocos milímetros de ceniza. Durante este tipo de actividad se podría observar incandescencia (brillo) en el cráter. Las explosiones pequeñas podrían lanzar bloques balísticos decimétricos hasta 1-2 km del cráter, produciendo abundante incandescencia en los flancos superiores. Lahares secundarios pequeños se podrían formar debido a la remobilización del material eruptivo por lluvia o deshielo del glaciar afectando principalmente la zona del Parque Nacional Cotopaxi. Al momento de la publicación de este informe, este es el escenario en curso;
  • Escenario 2) el nuevo pulso de magma llega al reservorio pero su paso a la superficie está obstruido por un tapón, lo que provoca un aumento de la presión en el conducto volcánico. Eventualmente, la presión del magma vence la resistencia del tapón, produciendo una (o más) explosiones de tamaño moderado a grande con abundante incandescencia, caídas de bombas balísticas que alcanzan un máximo de 5 km desde el cráter y pequeños flujos piroclásticos (tipo Tungurahua julio 2013). Las caídas de ceniza son moderadas a fuertes en las direcciones predominantes del viento con una acumulación de algunos milímetros hasta pocos centímetros de ceniza cerca del volcán. Adicionalmente se pueden formar lahares por la mezcla del material volcánico con agua de derretimiento del glaciar. En este escenario los lahares podrían ser de tamaño pequeño hasta moderado y afectarían principalmente la zona del Parque Nacional Cotopaxi, pero también zonas pobladas de los drenajes principales del volcán (ríos Pita, y/o Cutuchi y/o Alaquez y/o Jatunyacu), aunque no con la misma magnitud del escenario de 1877. Flujos de agua lodosa podrían bajar en los drenajes principales sin mayor afectación. Al momento de la publicación de este informe este escenario es menos probable que el escenario a);
  • Escenario 3) el pulso de magma que asciende tiene un volúmen mayor y una mayor velocidad de ascenso. Esto hace que las altas presiones producidas abran violentamente el conducto volcánico y se produzcá una erupción paroxismal (tipo Cotopaxi junio 1877, Reventador noviembre 2002, Tungurahua agosto 2006) con la generación de flujos piroclásticos en todos los flancos, con predominancia hacia la dirección del viento. Los flujos piroclásticos pueden alcanzar el pie del volcán. El contacto entre los flujos piroclásticos calientes y el glaciar produce un gran derretimiento de este último, lo que genera lahares moderados o grandes que bajan por uno o varios de los drenajes que nacen en el volcán.  Estos lahares pueden viajar decenas hasta cientos de kilómetros por los valles de los ríos dejando depósitos de metros hasta decenas de metros de espesor. Adicionalmente se puede producir fuertes caídas de ceniza y lapilli (cascajo) asociada a esta actividad. El espesor del depósito de caída podría alcanzar más de 1 cm a 70 km y 10 cm a 20 km del volcán en la dirección principal del viento. En general, a las erupciones paroxismales, siguen otras menores que van decayendo en intensidad hasta que cesan luego de varios meses o años. Al momento de la publicación de este informe este escenario es mucho menos probable de ocurrir en las próximas semanas que los escenarios 1 y 2;
  • Escenario 4) no se descarta por completo una disminución de la actividad eruptiva en el caso de que la nueva intrusión de magma no ascienda a zonas superficiales. Sin embargo, en función de los parámetros de monitoreo y a la historia volcánica del Cotopaxi, este escenario es el menos probable de todos.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán.

PM,MR,EH,MY,CB,GV,SH
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El día lunes 26 de octubre desde las 12h00, en las instalaciones del Geofísico, se realizó una rueda de prensa, en presencia del Ing. Jaime Calderón, Rector de la EPN, Dra. María del Pilar Cornejo, Secretaria de Gestión de Riesgos y el Dr. Mario Ruiz, Director del instituto Geofísico de la Escuela Politécnica Nacional, con la finalidad de informar a la ciudadanía sobre el fortalecimiento del monitoreo para detección de lahares del volcán Cotopaxi.

La SGR entrega al IGEPN equipos para detección de lahares

Foto 1. El Dr. Ruiz junto al Ing. Calderón (rector de la EPN, der.), la Dra. Cornejo y el Ing. José Luis Ascencio (SGR, izq.) durante el acto de entrega de los equipos.

 

El Ing. Jaime Calderón durante su intervención resaltó el trabajo prioritario que viene realizando la Politécnica Nacional desde 1983 a través del Instituto Geofísico, tanto en el monitoreo volcánico y sísmico del Ecuador en pro de los ecuatorianos.

Por su parte el Dr. Mario Ruiz, Director del instituto Geofísico de la EPN, señaló que la entrega de estos equipos permiten fortalecer el monitoreo del volcán Cotopaxi y obtener datos en tiempo real, avisando oportunamente a las autoridades y a la ciudadanía como un sistema de alerta temprana enmarcado en la prevención y mitigación de daños ante una posible erupción.

Finalmente, la Dra. María del Pilar Cornejo destacó el apoyo que brinda el Gobierno Nacional al entregar estos equipos para reducir la vulnerabilidad de los ciudadanos. De igual forma destacó que se ha brindado capacitación permanente a las poblaciones que pueden estar afectadas y que se continuará realizando esta actividad.

Entre los equipos que recibió el Instituto Geofísico están: 1 cámara térmica fija de alta resolución, 3 pluviómetros, 22 paneles solares, 6 generadores eólicos, 6 cámaras de visualización, 25 baterías de libre mantenimiento, entre otros. El valor total de la entrega de los equipos equivale a más de 195 mil dólares.

La SGR entrega al IGEPN equipos para detección de lahares

Foto 2. Parte de los equipos entregados por la SGR al IGEPN.

 

Actualmente el Instituto Geofísico de la Escuela Politécnica cuenta con 12 estaciones para el equipo de monitoreo de lahares del Volcán Cotopaxi ubicados en los drenajes norte, sur y occidental del volcán, lo que permite tener capacidad de detectar el paso de lahares las 24 horas durante los siete días de la semana.

Según los representantes del Servicio Geológico de los Estados Unidos y la RED NOVAC encargada en de la Observación de Cambios Volcánicos y Atmosféricos, quienes visitaron el Instituto Geofísico en el mes de septiembre señalaron que el volcán Cotopaxi es uno de los mejores monitoreados en Latinoamérica.

La SGR entrega al IGEPN equipos para detección de lahares

Foto 3. El Dr. Ruiz indica una cámara web al Ing. Calderón y a la Dra. Cornejo, la cual es parte de la entrega realizada.

 

Publicado en Comunidad

Respondiendo al interés de los Gobiernos Autónomos descentralizados de Mejía, Rumiñahui y Quito el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), la Secretaria de Gestión de Riesgos (SGR) y técnicos de las diferentes municipalidades de Mejía y Rumiñahui realizaron una serie de visitas en sitios estratégicos con la finalidad de ratificar zonas de amenaza y sitios seguros ante una potencial erupción del Volcán Cotopaxi.

El trabajo interinstitucional de verificación en campo permite coordinar acciones para manejar de una manera más eficiente y eficaz las rutas de evacuación y zonas seguras ya definidas.

Publicado en Comunidad

Continuación de Emisión de Cenizas y Columnas Moderadas

Resumen
Después del Informe No. 19, emitido el 07 de Octubre, el volcán Cotopaxi registró una actividad superficial caracterizada por leves y moderadas emisiones de gases/vapor de agua y cenizas. Estas manifestaciones empezaron el 05 de Octubre, pero particularmente fueron evidentes el 07 de Octubre.  Desde esta fecha se reportaron pequeñas caídas de ceniza y niveles del gas SO2 entre 1.000 y 7.600 ton/día.  Al momento la actividad del volcán está circunscrita a lo indicado en el Escenario “1” descrito en las actualizaciones previas y al final de este documento.  Este escenario prevé que el volcán continuará produciendo emisiones, posiblemente explosiones ocasionales de tamaños pequeñas a moderadas y lahares secundarios que quedan dentro del Parque Nacional Cotopaxi.


Sismicidad

Durante la última semana, la actividad del volcán Cotopaxi se caracterizó por la presencia esporádica de señales sísmicas asociadas a las emisiones, llamadas tremores de emisión (Fig. 1), y por la generación de sismos volcano-tectónicos (VT) que llegaron a presentar un promedio de ~ 50 eventos/día (Fig.2).  Las magnitudes de los VTs son generalmente menores a 1, sin embargo se registraron eventos con magnitud 2.7 el 14 de octubre. El tremor de emisión se caracterizó por tener amplitudes bajas hasta moderadas y duraciones entre 1 y 12 horas.  La energía asociada a la actividad sufrió un leve incremento entre la segunda a tercera semana de Octubre (Fig. 3). La mayoría de los eventos VTs se ubican debajo del cráter, a menos de 12 km de profundidad desde el nivel de la cumbre (Fig. 4). Adicionalmente se han registrado otros tipos de eventos, como híbridos y eventos de muy baja frecuencia (VLP) (Fig. 4).   Un día típico del registro sísmico fue del 17 de Octubre donde se registraron 11 horas del tremor de emisión seguido por varios eventos VT´s (Fig. 5)

Informe Especial Cotopaxi 20 - 2015

Figura 1. Registro del tremor de emisión desde Agosto, 2015. Se nota que a mediados de Octubre hubo un repunte en estas señales.

Informe Especial Cotopaxi 20 - 2015

Figura 2. Registro del número de sismos volcano-tectónicos desde el 01 de Agosto, 2015.  Se observa una clara y progresiva disminución de estos eventos en las últimas semanas.

Informe Especial Cotopaxi 20 - 2015

Figura 3. Medidas de las amplitudes sísmicas promedio (RSAM) para el volcán Cotopaxi desde el 1 de enero de 2015 hasta al presente. El RSAM indica un incremento en la energía sísmica total. Se observa claramente el periodo de baja energía registrado en la última semana de Septiembre y el nuevo incremento en este parámetro desde el 13 de octubre del 2015.

Informe Especial Cotopaxi 20 - 2015

Figura 4. Localizaciones de los eventos ocurridos en el volcán Cotopaxi entre el 01 al 16 de Octubre, 2015.  La gran mayoría de eventos localizados corresponde a sismos de tipo volcano-tectónico (VT, triángulos azules) y unos pocos LP (círculos rosados). Todos los eventos se sitúan aproximadamente debajo del cráter del volcán, a profundidades de menos de 12 km (aunque la mayoría está a menos de 9 km).

Informe Especial Cotopaxi 20 - 2015

Figura 5. Sismograma de la estación sísmica de banda ancha del Refugio (BREF).  Se observan 11 horas de tremor de emisión, seguidas por un telesismo (flecha verde) y luego por esporádicos eventos VTs. El evento grande a las 17h28Tu del 17 de octubre que tuvo un magnitud de 2.3 (flecha roja).


Deformación
No se han observado tendencias de variación en los valores del inclinómetro de VC1 (flanco NE). En el período desde el 07 hasta el 16 de Octubre se registró una estabilidad en el registro,  sin observarse ningún ascenso ni descenso. (Fig. 6).  

Informe Especial Cotopaxi 20 - 2015

Figura 6. Los valores de la deformación neta en el inclinómetro VC1 que desde mediados de septiembre hasta el presente están estables, sin una tendencia ascendente ni descendente.

Como parte de las actividades que realizan conjuntamente el IRD y el IGEPN en el marco del Convenio Laboratorio Mixto Internacional Sismos y Volcanes de los Andes del Norte, el Dr. Jean Mathieu Nocquet analizó las señales de deformación del volcán. Como resultado de este análisis, presentó el mapa adjunto (Figura 7) que muestra el movimiento acumulado en los puntos GPS desde el 01/01/2015.  Para producir este mapa, se ha corregido la deriva debida a los movimientos tectónicos, así que los efectos estacionales calculados sobre el periodo 2010.0-2015.0. El mapa representa la anomalía de movimiento del terreno detectado en el 2015 (Fig. 7).

El nivel de deformación es bajo, con respecto a otras deformaciones registradas antes de erupciones, pero es significativa. La anomalía empezó en Abril 2015 y alcanza 1 cm en los sitios en el flanco Oeste del volcán y está acelerando desde Abril.  La tasa de deformación observada es de 3 mm de desplazamiento horizontal por mes.

Informe Especial Cotopaxi 20 - 2015

Figura 7. Deformación observada en las estaciones de GPS del Instituto Geofísico, después de corregir valores de deriva y cambios estacionales.  Las flechas amarillas muestran variaciones horizontales del terreno y las rojas muestran los cambios verticales las escalas se muestran en la esquina inferior izquierda. Elaborado por el Dr. Jean Mathieu Nocquet.  La deformación máxima es 1 cm de desplazamiento horizontal y 1 cm vertical.


Emisión del SO2
Los valores de flujo de SO2 obtenidos por la red permanente de DOAS muestran variaciones.  Entre el 07 a 09 de Octubre los valores fueron alrededor de 1400 ton/día.  Luego entre el 10 y el 12 de Octubre un ascenso de la concentración de este gas marcó entre 4100 a 7600 ton/día.  Desde el 13 de Octubre los valores mantienen en aproximadamente 1500 ton/día (Fig.8).

Informe Especial Cotopaxi 20 - 2015

Figura 8. Los valores del SO2 (dióxido de azufre) han variado entre 1000 a 7500 t/día.


Dispersión y caída de ceniza
Desde el 08 de octubre hasta la presente se han recibido reportes de leves caídas de cenizas finas en la parte Occidental –Sur Occidental (San Ramón, San Agustín de Callo y Barrancas por la tarde del 16 de octubre.  Además fueron reportados caídas finas en Rumipamba y Vallecito en Cantón Rumiñahui durante el 17 de octubre.  El día domingo 18 de octubre las cenizas se propagaron hacia el occidente del volcán (Fig. 9).

Informe Especial Cotopaxi 20 - 2015

Figura 9. Dispersión de las nubes de ceniza asociadas a la actividad del volcán Cotopaxi para el 18 de ocubre de 2015 (fuente de datos: Washington VAAC, base: Google Earth). Dirección de la nube de ceniza hacía el occidente.


Observaciones visuales
Debido a las condiciones climáticas muy nubladas durante la última semana en pocas ocasiones ha sido posible ver la cumbre del volcán y las emisiones.  Se han visto columnas ligeramente hasta moderadamente cargada con cenizas que suben hasta 1.5 km sobre la cumbre.  Sin embargo, el día 19 de Octubre en la mañana hubo una visibilidad adecuada para observar una columna de por lo menos 1.5 km de altura, visto de una camera de ECU-911 en el Teleférico  (Fig. 10).

Informe Especial Cotopaxi 20 - 2015

Figura 10. Vista del flanco norte del volcán Cotopaxi y su columna de vapor, gases y cenizas, tomada por una camera de ECU-911, desde el Teleférico, con fecha de 19 de Octubre, 2015, a las 07h37TL.Fotografía del Sistema Ecu911.


Interpretación
Los datos de monitoreo obtenidos desde el 8 de octubre indican que la continúa con las características propias del escenario “1” propuesto en las actualizaciones anteriores. Hemos observado que un nuevo pulso de magma alcanzó niveles suficientemente superficiales para producir manifestaciones como brillo en el cráter, emisiones e incremento del gas SO2.  Las emisiones subsecuentes han sido leves y las columnas no han superado 2 km sobre el nivel del cráter.   
Dentro de este escenario “1” se podrían además producir los siguentes fenómenos:
-    continuación de la emisión y consecuente caída de ceniza.
-    explosiones pequeñas a moderadas con bloques incandescentes limitados a zonas cercanas al cráter.

En este escenario no se considera probable la generación de lahares de tamaño moderado ni grande, pero sí, posiblemente la generación de lahares secundarios pequeños asociados a la removilización de la ceniza debido al deshielo del glaciar y a lluvias en las partes altas del edificio volcánico.


Escenarios
Al momento, como se ha indicado, el volcán presenta una actividad circunscrita dentro del escenario “1” (detallado nuevamente a continuación). Sin embargo, debido a que los sistemas naturales pueden presentar cambios en el corto plazo no podemos descartar como posibles los demás escenarios para los próximos días a semanas (en orden del más probable al menos probable

  • 1) el nuevo pulso de magma llega lentamente al reservorio y tiene paso libre hasta la superficie. En este caso, la actividad eruptiva aumenta progresivamente, con ocurrencia de emisiones de ceniza seguidas por pequeñas explosiones. El proceso eruptivo se prolonga por semanas hasta agotamiento de la energía de este pulso de magma (tipo Tungurahua marzo 2013). Este tipo de fases eruptivas puede repetirse si la alimentación en magma se mantiene en el mismo nivel. Las caídas de ceniza son leves a moderadas en las direcciones predominantes del viento con una acumulación de hasta pocos milímetros de ceniza. Durante este tipo de actividad se podría observar incandescencia en el cráter. Las explosiones pequeñas podrían lanzar bloques balísticos decimétricos hasta 1-2 km del cráter, produciendo abundante incandescencia en los flancos superiores. Lahares secundarios pequeños se podrían formar debido a la remobilización del material eruptivo por lluvia o deshielo del glaciar afectando principalmente la zona del Parque Nacional Cotopaxi. Al momento de la publicación de este informe, este es el escenario en curso;
  • 2) el nuevo pulso de magma llega al reservorio pero su paso a la superficie está obstruido por un tapón, lo que provoca un aumento de la presión en el conducto volcánico. Eventualmente, la presión del magma vence la resistencia del tapón, produciendo una (o más) explosiones de tamaño moderado a grande con abundante incandescencia, caídas de bombas balísticas que alcanzan un máximo de 5 km desde el cráter y pequeños flujos piroclásticos (tipo Tungurahua julio 2013). Las caídas de ceniza son moderadas a fuertes en las direcciones predominantes del viento con una acumulación de algunos milímetros hasta pocos centímetros de ceniza cerca del volcán. Adicionalmente se pueden formar lahares por la mezcla del material volcánico con agua de derretimiento del glaciar. En este escenario los lahares podrían ser de tamaño pequeño hasta moderado y afectarían principalmente la zona del Parque Nacional Cotopaxi, pero también zonas pobladas de los drenajes principales del volcán (ríos Pita, y/o Cutuchi y/o Alaquez y/o Jatunyacu), aunque no con la misma magnitud del escenario de 1877. Flujos de agua lodosa podrían bajar en los drenajes principales sin mayor afectación. Al momento de la publicación de este informe este escenario es menos probable que el escenario a);
  • 3) el pulso de magma que asciende tiene un volúmen mayor y una mayor velocidad de ascenso. Esto hace que las altas presiones producidas abran violentamente el conducto volcánico y se produzcá una erupción paroxismal (tipo Cotopaxi junio 1877, Reventador noviembre 2002, Tungurahua agosto 2006) con la generación de flujos piroclásticos en todos los flancos, con predominancia hacia la dirección del viento. Los flujos piroclásticos pueden alcanzar el pie del volcán. El contacto entre los flujos piroclásticos calientes y el glaciar produce un gran derretimiento de este último, lo que genera lahares moderados o grandes que bajan por uno o varios de los drenajes que nacen en el volcán.  Estos lahares pueden viajar decenas hasta cientos de kilómetros por los valles de los ríos dejando depósitos de metros hasta decenas de metros de espesor. Adicionalmente se puede producir fuertes caídas de ceniza y lapilli (cascajo) asociada a esta actividad. El espesor del depósito de caída podría alcanzar más de 1 cm a 70 km y 10 cm a 20 km del volcán en la dirección principal del viento. En general, a las erupciones paroxismales, siguen otras menores que van decayendo en intensidad hasta que cesan luego de varios meses o años. Al momento de la publicación de este informe este escenario es mucho menos probable de ocurrir en las próximas semanas que los escenarios 1 y 2;
  • 4) no se descarta por completo una disminución de la actividad eruptiva en el caso de que la nueva intrusión de magma no ascienda a zonas superficiales. Sin embargo, en función de los parámetros de monitoreo y a la historia volcánica del Cotopaxi, este escenario es el menos probable de todos.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán.  El Instituto Geofísico dará información oportuna sobre la actividad del volcán o su aumento.


PM, MR, GV, SH, MY, SB
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes
Jueves, 08 Octubre 2015 17:10

Emisión de ceniza del volcán Cotopaxi

Durante las primeras horas del 08 de octubre de 2015 se detectó una emisión con carga de ceniza del volcán Cotopaxi, la cual fue captada por la cámara localizada en el sector de Sincholagua, utilizando el modo nocturno y el modo normal de la cámara.

La red de cámaras del volcán Cotopaxi se encuentran disponibles para su visualización en nuestra página web, en la sección Cámaras del volcán Cotopaxi.

A continuación el video:

Publicado en Volcanes

Resumen
El volcán Cotopaxi registró un periodo de baja actividad superficial entre el 21 de septiembre y 1 de octubre, durante el cual se observó únicamente emisión de gases. A partir de la noche del 2 de octubre se pudo observar con claridad brillo a nivel del cráter y desde la madrugada del 3 de octubre se observaron emisiones de ceniza puntuales. A partir del 5 de octubre la emisión de ceniza se ha venido haciendo más continua, registrándose ya caída de este material hacia los flancos occidental y norte del volcán. A esta emisión de ceniza están asociados, a nivel sísmico, la aparición de señales de tremor de emisión y la disminución de eventos volcano-tectónicos; y a nivel de la desgasificación, el incremento de la tasa de SO2. Las medidas de temperatura realizadas durante un sobrevuelo el 2 octubre mostraron a su vez un incremento con respecto a las observaciones precedentes. Se detectaron 4 pequeños lahares secundarios limitados al área del Parque Nacional Cotopaxi. Estos lahares estuvieron asociados a lluvias en la parte alta del volcán y al leve deshielo del glaciar. Al momento la actividad del volcán está circunscrita a lo indicado en el Escenario “a” descrito en las actualizaciones previas y al final de este documento.


Sismicidad
Las características de la actividad sísmica del volcán Cotopaxi cambiaron con respecto a la semana anterior, siendo los cambios más notables: 1) la ocurrencia diaria de sismos de tipo volcano-tectónico disminuyó de 130 a 87; y 2) aparecieron episodios de tremor de emisión.  La energía asociada a la actividad sufrió un leve incremento justamente debido a estos episodios de tremor (Fig. 1). La mayoría de los eventos localizados se ubican debajo del cráter, a menos de 12 km de profundidad bajo el mismo (Fig. 2). Adicionalmente se han registrado otros tipos de eventos, como híbridos y eventos de muy baja frecuencia (VLP).

Informe Especial Cotopaxi 19 - 2015

Figura 1. Medidas de las amplitudes sísmicas promedio (RSAM) para el volcán Cotopaxi desde el 1 de enero de 2015. El RSAM indica incrementos en la energía sísmica total. Se observa claramente el periodo de baja energía registrado la última semana de Septiembre y el nuevo incremento en este parámetro desde el 5 de octubre de 2015.

 

Informe Especial Cotopaxi 19 - 2015

Figura 2. Localizaciones de los eventos ocurridos en el volcán Cotopaxi entre el 30 de septiembre y el 7 de octubre de 2015.La gran mayoría de eventos localizados corresponde a sismos de tipo volcano-tectónico (VT, triángulos azules) y unos pocos LP (círculos rosados). Todos los eventos se sitúan aproximadamente debajo del cráter del volcán, a profundidades de menos de 12 km (aunque la mayoría están a menos de 9 km).

 


Deformación
Se han observado tendencias de variación en los valores del inclinómetro de VC1 (flanco NE). En el período desde el 30 de septiembre hasta el 6 de octubre se registró un aumento de 26 urad (micro-radianes) en el eje radial y una disminución de 25 urad en el eje tangencial. Estas tendencias coincidieron con la reducción del número de VTs registrados en el mismo período de tiempo, tal como se lo puede ver en la Figura 2. En el inclinómetro ubicado en el Refugio (flanco N) no se observan cambios importantes, las variaciones son menores al ruido del instrumento. Adicionalmente, en las mediciones realizadas mediante InSAR y GPS no se detectan cambios significativos.

Informe Especial Cotopaxi 19 - 2015

Figura 3. Los valores del eje tangencial de VC1 desde el 30 de septiembre tienen una tendencia descendente parecida al número de VT registrados por día (S. Aguaiza - IGEPN).

 


Emisión del SO2
Los valores de flujo de SO2 obtenidos tanto por la red permanente de DOAS, así como mediante medidas móviles (DOAS móvil) y por datos satelitales mostraron un incremento desde el 4 de octubre (Fig. 4). Los valores medidos entre el 30 de Septiembre y el 3 de Octubre oscilaron alrededor de 3,000 t/día, mientras que desde el 4 de octubre la tasa de emisión de SO2 es superior a las 7,000 t/día. Este claro incremento está directamente relacionado a la actividad de emisión que el volcán está presentando.

Informe Especial Cotopaxi 19 - 2015

Figura 4. Flujo de SO2 desde el 1 de mayo 2015 hasta el presente. Se observa un incremento de los valores en los últimos días asociados a la actividad de emisión.

 


Dispersión y caída de ceniza.
El lunes 5 de octubre se registró el primer episodio de emisión de ceniza asociado a una señal de tremor de emisión. La columna alcanzó 1,5 km snc (sobre el nivel de la cumbre) y se dirigió hacia el Occidente según la Washington VAAC. Desde la madrugada de hoy, miércoles 7 de octubre, se observa una emisión más continua con una nube con carga moderada de ceniza que alcanzó 2 km snc y se dirigió hacia el Nor-noroccidente a las 07h15 (TL). Según las simulaciones para el día de hoy la caída de ceniza podría afectar el sector Occidental a Noroccidental, con una intensidad moderada a baja.

Informe Especial Cotopaxi 19 - 2015

Figura 5. Dispersión de las nubes de ceniza asociadas a la actividad del volcán Cotopaxi para el 7 de ocubre de 2015 (fuente de datos: Washington VAAC, base: GoogleEarth).

 


Observaciones visuales
A partir de la noche del 2 de octubre se pudo observar con claridad incandescencia a nivel del cráter y desde la madrugada del 3 de octubre se observaron emisiones puntuales de ceniza (Figura 6a). La tarde del 5 de octubre se registró un episodio de emisión que duró 1 hora y a partir de la madrugada del 7 de octubre la emisión de ceniza ha sido continua hasta el momento (Figura 6b).

Informe Especial Cotopaxi 19 - 2015

Figura 6a. Emisión puntual de ceniza del volcán Cotopaxi vista desde el Iliniza Sur el 3 de octubre de 2015. Foto: Diego Barga. b. Imagen recuperada de la cámara web instalada en el volcán Rumiñahui para el 7 de ocubre de 2015.

 


Monitoreo térmico
Durante el sobrevuelo realizado el 2 de octubre, la ausencia de nubosidad permitió tener medidas de casi todas las anomalías térmicas identificadas y analizadas en vuelos anteriores. La temperatura máxima aparente (TMA) correspondió al sector del cráter interno con un valor de 104,3°C, se pudo notar que a diferencia del vuelo del día 29 de septiembre, ahora se tiene una zona homogénea con alta temperatura en las paredes internas del cráter (Figura 7).  Con respecto a los campos fumarólicos se observó de igual manera un incremento en las temperaturas de algunos de ellos. Así por ejemplo en el sitio “flanco oriental 1” el valor de TMA medido fue 57,9°C con respecto a 51º C, medidos en el vuelo anterior.

Informe Especial Cotopaxi 19 - 2015

Informe Especial Cotopaxi 19 - 2015

Figura 7: Sup. Imagen térmica que muestra el valor más alto de TMA y que corresponde al cráter interno con 104,3°C. Inf. Fotografía correspondiente, muestra la débil emisión de gases que se dirigían al oriente  (Imagen/Fotografía: M. Almeida/S. Vallejo, IG-EPN).

 


Interpretación
Los datos de monitoreo obtenidos desde el 2 de octubre indicaron la materialización del escenario “a” propuesto en las actualizaciones anteriores. Hemos observado que un nuevo pulso de magma ha alcanzado niveles suficientemente superficiales y hasta el momento se han producido los siguientes fenómenos en superficie:

* brillo en el cráter,
* emisión de ceniza,
* incremento de la tasa de desgasificación de SO2

Dentro de este escenario “a” se podrían además producir los siguentes fenómenos:

* continuación de la emisión y consecuente caída de ceniza.
* explosiones pequeñas a moderadas con bloques incandescentes limitados a zonas cercanas al cráter.

En este escenario no se considera probable la generación de lahares de tamaño moderado a grande, pero sí, la generación de lahares secundarios pequeños asociados a la removilización de la ceniza debido al deshielo del glaciar y a lluvias en las partes altas del edificio volcánico.


Escenarios:
Al momento, como se ha indicado, el volcán presenta una actividad circunscrita dentro del escenario “a” (detallado nuevamente a continuación). Sin embargo, debido a que los sistemas naturales pueden presentar cambios en el corto plazo no podemos descartar como posibles los demás escenarios para los próximos días a semanas (en orden del más probable al menos probable:

  • a) el nuevo pulso de magma llega lentamente al reservorio y tiene paso libre hasta la superficie. En este caso, la actividad eruptiva aumenta progresivamente, con ocurrencia de emisiones de ceniza seguidas por pequeñas explosiones. El proceso eruptivo se prolonga por semanas hasta agotamiento de la energía de este pulso de magma (tipo Tungurahua marzo 2013). Este tipo de fases eruptivas puede repetirse si la alimentación en magma se mantiene en el mismo nivel. Las caídas de ceniza son moderadas en las direcciones predominantes del viento con una acumulación de hasta pocos milímetros de ceniza. Durante este tipo de actividad se podría observar incandescencia en el cráter. Las explosiones pequeñas podrían lanzar bloques balísticos decimétricos hasta 1-2 km del cráter, produciendo abundante incandescencia en los flancos superiores. Lahares secundarios pequeños se podrían formar debido a la remobilización del material eruptivo por lluvia o deshielo del glaciar afectando principalmente la  zona del Parque Nacional Cotopaxi. Al momento de la publicación de este informe, este es el escenario en curso;
  • b) el nuevo pulso de magma llega al reservorio pero su paso a la superficie está obstruido por un tapón, lo que provoca un aumento de la presión en el conducto volcánico. Eventualmente, la presión del magma vence la resistencia del tapón, produciendo una (o más) explosiones de tamaño moderado a grande con abundante incandescencia, caídas de bombas balísticas que alcanzan un máximo de 5 km desde el cráter y pequeños flujos piroclásticos (tipo Tungurahua julio 2013). Las caídas de ceniza son moderadas a fuertes en las direcciones predominantes del viento con una acumulación de algunos milímetros hasta pocos centímetros de ceniza cerca del volcán. Adicionalmente se pueden formar lahares por la mezcla del material volcánico con agua de derretimiento del glaciar. En este escenario los lahares podrían ser de tamaño pequeño hasta moderado y afectarían principalmente la zona del Parque Nacional Cotopaxi, pero también zonas pobladas de los drenajes principales del volcán (ríos Pita, y/o Cutuchi y/o Alaquez y/o Jatunyacu), aunque no con la misma magnitud del escenario de 1877. Flujos de agua lodosa podrían bajar en los drenajes principales sin mayor afectación. Al momento de la publicación de este informe este escenario es menos probable que el escenario a);
  • c) el pulso de magma que asciende tiene un volúmen mayor y una mayor velocidad de ascenso. Esto hace que las altas presiones producidas abran violentamente el conducto volcánico y se produzcá una erupción paroxismal (tipo Cotopaxi junio 1877, Reventador noviembre 2002, Tungurahua agosto 2006) con la generación de flujos piroclásticos en todos los flancos, con predominancia hacia la dirección del viento. Los flujos piroclásticos pueden alcanzar el pie del volcán. El contacto entre los flujos piroclásticos calientes y el glaciar produce un gran derretimiento de este último, lo que genera lahares moderados o grandes que bajan por uno o varios de los drenajes que nacen en el volcán. Estos lahares pueden viajar decenas hasta cientos de kilómetros por los valles de los ríos dejando depósitos de metros hasta decenas de metros de espesor. Adicionalmente se puede producir fuertes caídas de ceniza y lapilli (cascajo) asociada a esta actividad. El espesor del depósito de caída podría alcanzar más de 1 cm a 70 km y 10 cm a 20 km del volcán en la dirección principal del viento. En general, a las erupciones paroxismales, siguen otras menores que van decayendo en intensidad hasta que cesan luego de varios meses o años. Al momento de la publicación de este informe este escenario es mucho menos probable que los escenarios a) y b);
  • d) no se descarta por completo una disminución de la actividad eruptiva en el caso de que la nueva intrusión de magma no ascienda a zonas superficiales. Sin embargo, en función de los parámetros de monitoreo y a la historia volcánica del Cotopaxi, este escenario es el menos probable de todos.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán.|

MR
Instituto Geofísico
Escuela Politécnica Nacional

 

 

Publicado en Volcanes

De acuerdo con lo descrito en el escenario A de la actualización No. 18, el volcán Cotopaxi ha iniciado una nueva fase de emisión de ceniza. Esta actividad se dio inicialmente en muy pequeñas cantidades desde la tarde del 5 de octubre (ver informe diario No. 141). Desde la madrugada de hoy, la emisión se ha incrementado, alcanzando hasta 1.5 km de altura sobre el nivel del cráter con una carga moderada de ceniza. Los vientos dirigen este material al occidente y noroccidente del volcán. Este tipo de actividad no es generadora de lahares de tamaño moderado ni grande. Se seguirá informando sobre el desarrollo de esta nueva fase de actividad del Cotopaxi.

Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Desde las 19h00 TL se ha observado claramente brillo en el cráter del volcán Cotopaxi. Este tipo de actividad indica la materialización progresiva del escenario A descrito en el informe de actualización No. 18. Este brillo se produce debido a gases a alta temperatura provenientes del magma. Esto podría ser premonitor de una nueva fase eruptiva caracterizada por explosiones pequeñas a moderadas que podrían expulsar bloques incandescentes limitados a las zonas cercanas al cráter. Esta actividad podría también ser el inicio de nuevas emisiones y caídas de ceniza. Con este tipo de y nivel de actividad no se podrían producir lahares de tamaño grande ni moderado. Para más detalles el lector puede referirse a la actualización antes mencionada.

Informe Especial Cotopaxi 19 - 2015

Foto 1. Imagen tomada a las 21:05 TL mediante la cámara de Sincholagua en modo visión nocturna. (Fuente: IGEPN).

 


Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El Instituto Geofísico de la Escuela Politécnica Nacional con la finalidad de fortalecer la capacidad de vigilancia del Volcán Cotopaxi, instaló dos nuevas estaciones a una distancia de 4 y 10 km del cráter para monitorear los gases que emite el volcán en el flanco occidental.

Los equipos denominados DOAS (espectrometros de absorción óptica diferencial) miden automáticamente la cantidad de luz en todas las direcciones del horizonte, cuando intercepta gases en el ambiente permite medir la cantidad de óxido de azufre y otros componentes que emana el volcán, trasmitiendo los datos cada cinco o diez minutos en tiempo real.

Los datos obtenidos son enviados por el Instituto Geofísico a la Red NOVAC, red liderada por la Universidad Chalmers en Suecia y encargada de la Observación de Cambios Volcánicos y Atmosféricos para medir la emisión de gases de 33 volcanes considerados los más importantes del mundo.

Para este Fin, el Instituto Geofísico invitó al Doctor Santiago Arellano de la Universidad de Chalmers para que realice en el Ecuador, los análisis científicos del volcán Cotopaxi y participe en la instalación de estos equipos. Durante su visita, el científico destacó que el Volcán Cotopaxi es uno de los mejores monitoreados a nivel mundial al contar entre otras técnicas con la infraestructura fundamental para la vigilancia de la emisión de gases volcánicos

La adquisición de estos equipos fue realizado por el Instituto Geofísico, con un valor aproximado de 30 mil dólares. Los quipos fueron ensamblados en Suecia por la Universidad de Chalmers

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Foto 1: científicos del Instituto Geofísico y el Dr. Santiago Arellano de la Universidad Chalmers de Suecia se encuentran instalando los equipos de monitoreo de gases.

 

Publicado en Comunidad

El día 29 de septiembre, con el apoyo logístico de una aeronave por parte del MICS, se efectuó un sobrevuelo desde el aeropuerto de Tababela en dirección a los volcanes Cotopaxi y Tungurahua, en un avión Twin Otter de la FAE (452), siguiendo la ruta que se muestra en la Figura 1.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 1: Ruta del vuelo efectuado el 29 de Septiembre de 2015 (Base: Google Earth).


VOLCÁN COTOPAXI

Observaciones visuales
Durante la aproximación al volcán Cotopaxi se pudo apreciar que el volcán se encontraba parcialmente despejado, se observó una columna de emisión que se elevaba alrededor de unos 1000 m sobre el cráter y luego se dirigía hacia el W. Una vez que se arribó al sector del volcán se observó que la emisión consistía en una columna de vapor de agua con un contenido bajo a nulo de ceniza. Dado que la emisión se manifestaba de manera pulsátil, hubo momentos en los que se podía observar el fondo del cráter, y por tanto se hicieron imágenes térmicas y digitales de esta zona, por primera vez desde que se inició la actividad, luego del 14 de agosto.

Una vez más se pudo confirmar lo observado en ocasiones anteriores, esto es la presencia de agua y humedad en el contacto de los glaciares con la superficie del terreno, desde donde se forman delgados hilos de agua, los que descienden por el flanco hasta los drenajes principales del volcán.  En informes anteriores también se mencionó que estos deshielos posiblemente podrían generar pequeños lahares secundarios. Nuevamente se observó que varias de las lenguas terminales de los glaciares se encuentran cruzadas de grietas y con evidencias de avance de los glaciares, debido muy probablemente a la fusión de los mismos. En la parte superior del glaciar del flanco S se observaron muchas zonas que aparentemente están experimentando derrumbes del glaciar (Fig. 2).

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 2: Notar las pequeñas zonas de color más claro, las que aparentemente representan sitios donde se derrumba el glaciar. (Foto: S. Vallejo IG/EPN).

En el flanco superior oriental se observó que el glaciar de esa zona ha experimentado una rápida fusión, lo cual ha provocado que se produzca caída de material desde la parte superior hacia el glaciar inferior, por lo que ahora presenta un color oscuro. Se debe indicar que ese material no estaba presente anteriormente cuando se hicieron las observaciones del vuelo del 15 de septiembre; tampoco se trata de ceniza, ya que las caídas de ceniza no se produjeron hacia esta zona del volcán (Fig. 3).

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 3: Glaciar del flanco E, la fusión del glaciar superior y del borde del cráter provoca desprendimientos de material rocoso hacia el glaciar inferior, por lo que se presenta de color oscuro. (Foto: S. Vallejo IG/EPN).

 

Monitoreo Térmico
Las buenas condiciones climáticas permitieron hacer medidas de temperatura de la mayoría de anomalías térmicas identificadas en el volcán. Lo más rescatable fue poder observar los cambios en el cráter interno, en donde se identificó claramente un vento que tiene varios cientos de profundidad con respecto a la cumbre, cuya base no pudo ser estimada debido a su gran profundidad, a pesar de ello se tomaron medidas de temperatura máxima aparente (TMA) del cráter interno así como de las emisiones pulsátiles observadas durante el sobrevuelo.  Los valores de TMA más altos correspondieron a las partes altas de las emisiones de gases y cuyo valor fue de 157,7°C, Figura 4. Este valor es menor al medido el 3 septiembre en donde se obtuvo un valor de 200,3°C, Tabla 1.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 4: Sup.: Imagen térmica que muestra una TMA de 157,7°C y que corresponde a la parte superior de una emisión. Inf.: Se muestra por primera vez la evidencia de la formación del vento formado en el presente período eruptivo (Imagen/Fotografía: S. Vallejo IG/EPN).

Con respecto a los campos fumarólicos se determinó que los valores de TMA se mantienen altos en un rango de 40 a 60°C. Esta intensa actividad fumarólica en la mayoría de los campos continúa generando la precipitación y depositación de minerales posiblemente azufre de coloración verdosa), Figura 4 y 5. Además se ha podido evidenciar que las áreas de dichos campos continúan aumentando, generando así que únicamente una parte reducida de glaciar se mantenga en las partes altas externas del cráter

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 5: Izq.: Imagen térmica que muestra una TMA de 157,7°C y que corresponde a la parte superior de una emisión. Der.: Se muestra por primera vez la evidencia de la formación del vento formado en el presente período eruptivo (Imagen/Fotografía: S. Vallejo IG/EPN).

Durante el presente sobrevuelo se identificaron nuevas zonas anómalas, las mismas que están relacionadas a los sectores en donde se ha depositado el material removilizado de las partes altas del cráter externo. Estas zonas han alcanzado un valor de TMA de 24°C, Figura 2 y 5. Cabe indicar que toda la parte alta y media del glaciar se encuentra cubierta por este material, ayudando así al proceso de ablación en el glaciar.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 6. Imagen térmica que muestra la nueva anomalía que corresponde a los sectores que son depósitos de material removilizado ubicados en las partes altas del cráter externo. (Imagen/Fotografía: S. Vallejo IG/EPN).

Los valores de TMA de las anomalías térmicas identificadas se encuentran en la Tabla 1, cabe resaltar que las temperaturas presentan valores altos y se acercan a su máximo medido entre los años 2002 y principios del 2015.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Tabla 1: Cuadro que muestra los valores de temperatura máxima aparente (TMA) de las diferentes anomalías térmicas identificadas en el volcán Cotopaxi, en amarillo los valores correspondientes al sobrevuelo efectuado el 22 de septiembre del 2015.

 

Conclusiones
El monitoreo termal y las observaciones visuales que se vienen efectuando desde el 18 de agosto tienden a indicar que los glaciares del volcán Cotopaxi se encuentran sujetos a un proceso de fusión, el mismo que se nota es más acelerado en las últimas semanas. El origen de este fenómeno se estima que está asociado al arribo de fluidos calientes a la superficie del edificio volcánico, los mismos que posiblemente se originan en un cuerpo magmático que se encuentra bajo el volcán y que producen el calentamiento que finalmente da lugar a la fusión de los glaciares. Se estima también que la presencia de la ceniza en los flancos del volcán da a lugar a una disminución del albedo de la ceniza y por tanto a un incremento de su temperatura, contribuyendo igualmente a la fusión del glaciar.

La fusión del glaciar produce varias manifestaciones, como la aparición de nuevas grietas en los flancos superiores y de una gran cantidad de fisuras y grietas en las lenguas terminales de los glaciares. Esto último parecería indicar que se produce un avance de los glaciares aguas abajo en los drenajes y que dependiendo de la pendiente este fenómeno podría acelerarse y eventualmente dar lugar a un colapso del glaciar, generando el posible descenso de flujos de lodo. También se ha observado el desprendimiento de material desde los bordes del cráter donde se ha fundido el glaciar, dando lugar a la presencia de material de color oscuro en los flancos superiores del E del volcán. Las imágenes térmicas también han revelado la presencia de anomalías termales en varias zonas de los glaciares y que en varios casos se ha podido verificar que están asociados a nueva actividad fumarólica.

En vista de que este fenómeno de fusión de los glaciares del volcán puede dar lugar a situaciones peligrosas, es necesario efectuar una evaluación de estas nuevas amenazas y que hasta el momento no eran claramente conocidas.

Con la presente actividad y la evidencia de una fuente de alta temperatura a una considerable profundidad es posible ver brillo en las columnas de emisión de gases a nivel del cráter. El brillo puede ser el resultado del reflejo de la incandescencia del magma en profundidad en los gases de la emisión. Una fotografía difundida en días pasados en redes sociales, capturó este brillo, lo que nos indica que este fenómeno no es reciente, pero que el mismo no está relacionado con una fuente de magma en superficie.


VOLCAN TUNGURAHUA

Observaciones visuales
A pesar de que en horas de la mañana, el volcán Tungurahua se mantuvo despejado, cuando se arribó al mismo, éste se encontraba en gran parte nublado. El sector de la cumbre estaba cubierto de nieve debido a las precipitaciones de los días anteriores. Desde el cráter interno se observó la emisión de una continua columna de vapor de agua que se movía hacia el SW.

Bajo el sector del borde occidental del cráter se observó la presencia de varias fumarolas activas y que han sido reportadas recientemente por el personal del OVT/IG.  Este es un campo fumarólico ubicado a pocos metros bajo el borde del cráter, donde se observó la emisión de vapor de agua y gases desde las mismas y además depósitos de color claro asociados a su actividad fumarólica (Figura 7). Bajo el borde SW del cráter igualmente se observó la presencia de fumarolas activas y de depósitos de color amarillo claro, igualmente asociados a la actividad de dichas fumarolas (Figura 7).

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 7: Vista de los flancos W y SW del volcán Tungurahua. Notar la presencia de fumarolas en el flanco W y en el flanco S. (Foto: S. Vallejo IG/EPN).
Monitoreo Térmico.

Debido a la emisión continua de gases no se pudieron hacer medidas de temperatura del fondo del cráter. El valor mayor de TMA corresponde a la pared del cráter interno con 88,7°C, mientras que para los campos fumarólicos nor oriente (elipse roja) y sur occidente (elipse blanca) se tuvieron valores de 36,2°C y 40,1°C, Figura 8.

Resumen de las observaciones efectuadas durante el sobrevuelo a los volcanes Cotopaxi y Tungurahua del día 29 de septiembre de 2015

Figura 8: Izq. Imagen térmica del volcán Tungurahua vista desde el nor oriente, muestra el cráter con una leve emisión y sus dos campos fumarólicos al exterior del cráter. Der. Fotografía correspondiente, se observan los dos campos fumarólicos activos. (Foto: S. Vallejo IG/EPN).

PR, SV, MA
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes