Reseña del Área de Desarrollo del Instituto Geofísico
Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Disminuye la erupción en el volcán Fernandina (La Cumbre)

 

Informe Especial Volcán Fernandina N° 2024-002
PORTADA: Fotografía nocturna de la erupción del volcán Fernandina (La Cumbre) desde el suroriente. Se puede apreciar la incandescencia generada por el flujo de lava activo (fisura #13) y la reflexión de esta sobre el océano (Fotografía: M. Almeida – IGEPN).


Agradecimientos

Gracias a una coordinación efectiva entre el Parque Nacional Galápagos y la empresa de cruceros SILVERSEA, dos miembros del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional realizaron una visita de campo al volcán Fernandina, entre el 5 y 7 de marzo. El objetivo de la misión fue realizar observaciones directas de la actividad eruptiva del volcán y mediciones de algunos parámetros de vigilancia volcánica, tales como: captura de imágenes térmicas y medición de gases volcánicos. El Instituto Geofísico de la Escuela Politécnica Nacional quiere agradecer a la administración del Parque Nacional Galápagos, a la administración de SILVERSEA y a la tripulación del Crucero SILVER ORIGIN; gracias a quienes, de inmediato, se obtuvieron valiosos datos para la generación del informe y para comprender los procesos asociados a las erupciones de las Islas Galápagos, como en este caso la erupción del volcán Fernandina.


Resumen
Desde el 06 de marzo de 2024, gracias a los datos térmicos y de desgasificación proporcionados por los sistemas satelitales y a los datos recolectados en campo, se puede evidenciar el descenso en los niveles de actividad del volcán Fernandina. Este cambio se asocia a una baja considerable en las alertas termales diarias y a una disminución considerable de la masa de gas presente en la atmósfera. Solo uno de los flujos de lava asociado a la fisura #13 está activo, pero con un caudal menor respecto al inicio de la erupción. Aproximadamente 20 fisuras se abrieron para dar paso a esta erupción, resultando en una estructura conocida como fisura circunferencial. Durante la visita de campo se pudo evidenciar algunos incendios de tamaño pequeño. Este fenómeno es común y está asociado a las altas temperaturas de los flujos de lava.
Al emitir este informe, los niveles de actividad se catalogan como: INTERNA y SUPERFICIAL: MODERADO con tendencia SIN CAMBIO.

Cómo citar/how to cite: IGEPN (2024) – Informe Volcánico Especial – Fernandina – N° 2024-002 (html).


Antecedentes
El volcán Fernandina (La Cumbre) inició una nueva fase eruptiva el sábado 2 de marzo de 2024 (IGEPN, 2024), luego de 4 años de su última erupción el 12 de enero de 2020 (IGEPN, 2020a y b). Esta erupción ha estado caracterizada por la emisión de flujos de lava a través de un sistema de fisuras paralelo al borde de la caldera (fisura circunferencial), y la emisión continua de gases volcánicos con dirección occidental, sin contenido de ceniza. Esta erupción es el resultado de un proceso de inflación causado por el ingreso de nuevo magma al sistema, detectado desde 2020 (IGEPN, 2021).

Desde 1800 el volcán Fernandina ha tenido entre 28 y 30 erupciones, la mayor tasa de recurrencia de erupciones en las Islas Galápagos.

 

Anexo técnico-científico

Deformación
En base al análisis efectuado a través de las imágenes SAR de Sentinel-1 en la órbita descendente, luego de la comparación de las imágenes obtenidas entre el 12 de febrero y el 07 de marzo de 2024, se identifican zonas que corresponden al borde de la caldera y que presentan actualmente una mayor distancia entre su superficie y la Línea de Vista del Satélite (LOS), por lo que esta región en color rojo comprende la zona que presenta deformación negativa o deflación, estimándose de forma preliminar entre 6 – 8 cm. Esto se interpreta como el efecto directo de la efusión de magma desde el reservorio del volcán hacia la superficie.

Informe Especial Volcán Fernandina N° 2024-002
Figura 1. Mapa de desplazamientos en el volcán Fernandina, procesado con el método LicSAR (Lazecký et al., 2020), entre el 24 de febrero y el 07 de marzo de 2024 (Procesado por: LicSAR COMET).


Morfología: fisuras y flujos de lava
En la imagen satelital Sentinel-2 del 6 de marzo, se ha podido evidenciar los cambios en la zona de la erupción del volcán Fernandina. Se han identificado unas 20 fisuras eruptivas, que se distribuyen paralelamente al borde externo de la caldera, sobre su flanco suroriental, en la zona de la cumbre (Fig. 2). La altura a la que se encuentran estas fisuras es variable, entre los 1000 y 1200 metros sobre el nivel del mar (m snm). La extensión aproximada de la zona de fisuras es de 4.3 km. Con base en la cartografía preliminar realizada sobre una imagen satelital “Planet” del 6 de marzo, se estima que el área cubierta por los flujos de lava de esta erupción es de aproximadamente 8.1 km2. Por estas fisuras se han emitido flujos de lava, que han descendido por el flanco suroriental y han tomado dirección sur por el cambio de pendiente. En esta zona de cambio de pendiente el flujo ha comenzado a acumularse y eventualmente romperse, produciendo pequeñas columnas de gas. El alcance máximo estimado de los flujos de lava es de 8 a 9 km. Aunque ocasionalmente se observan pequeñas columnas de humo debido a incendios, no se han detectado incendios de grandes proporciones en la zona de incidencia de los flujos de lava.

Informe Especial Volcán Fernandina N° 2024-002
Figura 2. Imagen SENTINEL-2 del 6 de marzo de 2024. En la misma se observa la zona de fisuras (líneas rojas) y los nuevos flujos de lava emitidos durante esta erupción (Elaborado por: M. Almeida – IGEPN).


En los trabajos de campo del 6 de marzo de 2024 en el volcán, se constató que solo uno de los flujos de lava se mantiene activo y con un caudal pequeño. Este flujo de lava está siendo emitido por la fisura #13 (Fig. 2, 3) y se acumula en la zona de cambio de pendiente (aprox. 750 m sobre el nivel del mar).

Informe Especial Volcán Fernandina N° 2024-002
Figura 3. Fotografía capturada desde el barco Silver Origin a 800 m del borde costero, durante las tareas de campo efectuadas el 6 de marzo de 2024. En la misma se observa la incandescencia del flujo de lava activo emitido a través de la fisura #13 (Fotografía: S. Hidalgo - IGEPN).


Termografía
Cámara térmica portátil: Durante los trabajos de campo se pudo obtener al menos 86 secuencias termales con una cámara térmica portátil (FLIR T1020). De ellas, se establece que las máximas temperaturas corresponden al flujo de lava activo emitido por la fisura #13. Las condiciones en las cuales se realizaron las imágenes termales fueron durante la madrugada (sin incidencia de radiación solar) a una distancia de 15 km, entre el 90 y 95 % de humedad relativa, y a una temperatura ambiente de 20 ˚C con cielo despejado. Las temperaturas máximas aparentes resultantes del análisis, muestran un máximo de 200 ˚C (ver imagen termal de la Fig. 4), bajo las condiciones de captura de imágenes antes mencionado, por tanto, se considera que la temperatura es subestimada.

Los flujos de lava asociados a la misma erupción, pero que ya no se encuentran activos, se muestran como débiles anomalías termales que no superan los 50 ˚C de temperatura (Fig. 4).

Informe Especial Volcán Fernandina N° 2024-002
Figura 4. Sobreposición de imagen térmica del 6 de marzo y fotografía en rango visible a 800 m del borde costero. Note las anomalías generadas por el flujo de lava activo y las anomalías más débiles asociadas a los flujos de lava en proceso de enfriamiento (Imagen Térmica: M. Almeida - IGEPN).


Anomalías térmicas satelitales: Los sistemas satelitales proveen imágenes que son útiles para la vigilancia volcánica en sitios de difícil acceso. La figura 5-a muestra una secuencia de tres imágenes obtenidas entre el 1 y el 11 de marzo de 2024. Para el 1 de marzo no hay anomalías térmicas, mientras que para el día 6 ya se aprecian los flujos de lava emitidos desde el 2 de marzo (inicio de la erupción). Para el día 11 no se observan cambios en su distribución. El proceso de enfriamiento de estos flujos de lava de los últimos días causa una disminución en el número de alertas termales (Fig. 5-b), desde centenares de alertas diarias (con intensidades extremas y muy altas) a pocas decenas (con intensidades muy altas). Esto significa que aún se registran temperaturas importantes, asociadas al flujo activo de lava de la fisura #13.

Informe Especial Volcán Fernandina N° 2024-002
Figura 5. Anomalías termales correspondientes a la erupción del volcán Fernandina: a) Imágenes satelitales obtenidas a través de COPERNICUS Browser, correspondientes al satélite SENTINEL-2. La frecuencia de imágenes es aproximadamente cada 5 días. Las imágenes en la figura corresponden al antes (1 de marzo), y durante (6, 11 de marzo) la erupción. b) Serie temporal de las anomalías diarias reportadas por diferentes satélites (Modis, Suomi, NOAA20) (Elaborado por: F. J. Vasconez - IGEPN).


Según los datos del sistema MIROVA la erupción se ha estabilizado desde el 6 de marzo, con una taza de efusión actual de 25 ± 12 m3/s (Fig. 6-a). Finalmente, los cálculos muestran que el volumen total de lava emitido durante esta erupción es de aproximadamente 25 Mm3 (Fig. 6-b).

Informe Especial Volcán Fernandina N° 2024-002
Figura 6. Datos del sistema MIROVA. a) Serie temporal de la taza de emisión de lava. b) Serie temporal del volumen de lava emitido (Cortesía: Diego Coppola – Universidad de Turín, Italia).


Desgasificación
Luego de la emisión de gas de 2 – 3 km de altura detectada el 2 de marzo de 2024, la cantidad de gas ha ido decreciendo. Este decaimiento de actividad ha venido de la mano principalmente de la baja altura de las columnas de emisión (< 100 m), las cuales en su mayoría están asociadas a la fisura #13 y a otras derivadas de la ruptura del frente del flujo de lava en la zona de acumulación (Fig. 7-a).

A partir de los datos de DOAS Mobile (Sistema de espectroscopia de absorción óptica diferencial - móvil), que se utilizan para medir flujo de SO2, se pudo detectar el día 6 de marzo la presencia de gas volcánico en las columnas de emisión observadas. Las condiciones de toma de medidas no permiten obtener un valor de flujo; por tanto, el dato obtenido corresponde a la concentración de SO2 en la columna de emisión, con valores variables de entre 100 y 120 ppm/m (Fig. 7-b). Este valor se puede considerar moderado, en cuanto a la cantidad de SO2 en la pluma de gas.

Informe Especial Volcán Fernandina N° 2024-002
Figura 7. Mediciones DOAS Mobile. a) Fotografía de las columnas de gas medidas con el equipo: en la línea entrecortada se resalta en color rojo las zonas donde se registraron los picos de gas durante las mediciones. b) Gráfico de concentración (ppm/m) detectado por el equipo DOAS Mobile. (Fotografía: M. Almeida - IGEPN).


También fue posible realizar una travesía para la medición de gases volcánicos utilizando un equipo MultiGAS (Fig. 8-a). Este equipo puede medir diferentes especies gaseosas provenientes del magma (agua: H2O, dióxido de azufre: SO2, dióxido de carbono: CO2), y otras de los sistemas hidrotermales (ácido sulfhídrico: H2S), cuyas razones ayudan a tener una visión interpretativa de las condiciones del reservorio magmático. Para esto, se instaló el equipo en un bote inflable a motor (Zodiac) y se realizó un recorrido de aproximadamente 10 - 15 km por el sur de la isla. Los resultados muestran un pico de gas de SO2 y H2S disperso, en concentraciones muy bajas de 0.08 y 0.12 ppm, respectivamente, en la zona suroriental. Este pico podría ser un remanente de la desgasificación que se desplaza hacia el occidente. De este pico de gas se pudo obtener una razón SO2/H2S con un valor de 1.3 (Fig. 8-b; correlación 0.96). Esta razón baja se presenta luego de los picos de actividad y se asocia a una disminución de SO2, coherente con la disminución de la desgasificación mostrada por otros métodos satelitales. El equipo MultiGAS no detectó CO2. Lamentablemente, no se tienen mediciones de otros eventos eruptivos (por ejemplo: 2017, 2020) que puedan ser comparadas con este resultado.

Informe Especial Volcán Fernandina N° 2024-002
Figura 8. Mediciones MultiGAS. a) Ruta de medición con el equipo MultiGAS. Los puntos verdes muestran el inicio y fin de la ruta, mientras que el punto rojo muestra la ubicación del pico de gas detectado. b) A la izquierda, se observan las secuencias temporales que forman picos de concentración de los gases SO2 y H2S, y a la derecha la gráfica de dispersión de las mediciones de ambas especies (Elaborado por: M. Almeida - IGEPN).


A lo largo de esta erupción se ha recibido información de valores de masa de dióxido de azufre registrado por los diferentes sistemas satelitales (MOUNTS, OMI, TROPOMI, entre otros). Las anomalías de desgasificación detectadas al inicio de la erupción han disminuido considerablemente, sin embargo, la cantidad de gas es suficiente como para que aún pueda ser detectado por los satélites (Fig. 9-a).

En la serie temporal de la figura 9-b, desde el valor máximo de 99 mil toneladas registrado el día 3 y 4 de marzo, se observa que los valores se reducen hasta 1900 toneladas (9 de marzo), mostrando un claro descenso en la desgasificación del volcán.

Informe Especial Volcán Fernandina N° 2024-002
Figura 9. Masa de dióxido de azufre SO2 detectado por los diferentes sistemas satelitales (MOUNTS, OMI, TROPOMI, entre otros). a) Anomalías de gas representativas detectadas al inicio (3 y 4 de marzo) y al disminuir la desgasificación (9 de marzo). b) Serie temporal del promedio (escala logarítmica) de los valores de desgasificación reportados por los sistemas satelitales. Note que desde el día 6 la desgasificación se mantiene más baja que al inicio de la erupción (Elaborado por: F. J. Vasconez - IGEPN).


Escenarios eruptivos
En base a las observaciones realizadas, se interpreta la actual actividad del volcán Fernandina (La Cumbre) como un típico proceso eruptivo de los volcanes de las Islas Galápagos. El principal fenómeno asociado a este evento es la emisión de flujos de lava a través de una fisura circunferencial en la parte alta del flanco suroriental del volcán. Al momento de la redacción del presente informe, no se ha detectado nuevas fisuras y flujos de lava. El escenario eruptivo más probable a corto plazo (días a semanas) es que la erupción llegue a su fin de manera paulatina. Sin embargo, no se puede descartar la ocurrencia de nuevos pulsos de actividad similar al 2-3 de marzo. Es importante indicar que existe la posibilidad, aunque poco probable, de que un pulso de actividad ocurra dentro de la caldera del volcán Fernandina como sucedió en 1968. De ser así, podrían producirse explosiones debido al contacto de la lava con el agua presente en la laguna al interior de la caldera.

De otro lado, los incendios asociados a las altas temperaturas de los flujos de lava aún pueden ocurrir, tal como en la erupción de 2017. En caso de incendio, la zona afectada podría ser más amplia y dependería de la dirección y velocidad del viento.

Finalmente, a pesar de que los flujos no han alcanzado el borde costero, en caso de existir nuevos pulsos de actividad con un alcance mayor, los flujos de lava podrían producir pequeñas explosiones y la emisión de gases tóxicos al entrar en contacto con el agua del mar.


Recomendaciones

No existen asentamientos humanos en la Isla Fernandina. Como la dirección predominante del viento es hacia el occidente-noroccidente, las islas pobladas (Isabela, Santa Cruz, Floreana y San Cristóbal) no deberían verse afectadas por gases volcánicos o caída de ceniza, salvo si el viento cambia de dirección. Si los flujos de lava ingresan al mar, se recomienda permanecer alejados, ante la potencial ocurrencia de explosiones pequeñas y liberación de gases tóxicos. La ocurrencia de incendios es un fenómeno secundario asociado a las altas temperaturas de los flujos de lava.


Referencias

• IGEPN (2020a) - Informe Volcánico Especial – Fernandina – 2020 - N°02 (https://www.igepn.edu.ec/servicios/noticias/1788-informe-especial-del-volcan-fernandina-n-2-2020)
• IGEPN (2020b) - Informe Volcánico Especial – Fernandina – 2020 - N°03 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-3-2020)
• IGEPN (2021) - Informe Volcánico Especial – Fernandina – 2021 - N°01 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-1-2021)
• IGEPN. (2024). Informe Volcánico Especial – Fernandina – N° 2024-001. https://www.igepn.edu.ec/servicios/noticias/2106-informe-volcanico-especial-fernandina-n-2024-001
• Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430.


Elaborado por:
Marco Almeida Vaca, Silvana Hidalgo, Francisco Vasconez, Fernanda Naranjo, Pablo Palacios, Marco Córdova, Anais Vásconez, Santiago Aguaiza, Silvia Vallejo, Benjamin Bernard.

Con la colaboración de: Pedro Espín Bedón (U. Leeds, Inglaterra), Diego Coppola (U. Turín, Italia).

Corrector de Estilo: Gerardo Pino

Instituto Geofísico
Escuela Politécnica Nacional

El volcán Sierra Negra, localizado en la Isla Isabela de la provincia de Galápagos, se ubica a 23 km al NO del centro de la ciudad de Puerto Villamil. El 26 de junio de 2018 inició un nuevo proceso eruptivo y su actividad se mantuvo hasta mediados del mes de agosto del mismo año, con la emisión de flujos de lava que se dirigieron principalmente hacia la parte norte del volcán.

Campaña de gravimetría asociada al reciente proceso eruptivo del volcán Sierra Negra
Fig. 1: Caldera del volcán Sierra Negra, con las lavas emitidas en el proceso eruptivo del 2005 y las nuevas lavas emitidas durante el proceso 2018. Vista hacia el Occidente. (Fotografía: E. Gaunt IG-EPN).


Entre el 24 de febrero y el 09 de marzo de 2022, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y de la Universidad Simon Fraser (SFU) en Canadá, realizaron una campaña de monitoreo gravimétrico en el Sierra Negra. La campaña que se realizó tanto en al interior de la caldera como en las zonas circundantes del volcán consistió en realizar medidas con dos micro-gravímetros (un Scintrex CG-5 y un LaCoste & Romberg G) en varias estaciones localizadas en los flancos norte, nororiental, oriental y suroccidental. El objetivo fue medir anomalías en el campo gravitacional local, asociadas al proceso eruptivo del volcán.

Mediante las medidas gravimétricas se pueden percibir las diminutas variaciones de gravedad asociadas a cambios de masa producidos antes, durante y después del proceso eruptivo de un volcán.

Durante la campaña, el equipo estableció dos nuevos puntos de medición en Sierra Negra, adicionales a las estaciones previamente medidas, uno en el borde sur de la cardera (SN33) y el segundo en el borde norte (SN34) (Fig. 2).

Campaña de gravimetría asociada al reciente proceso eruptivo del volcán Sierra Negra
Fig. 2: Mapa de los puntos de medición, con las nuevas estaciones establecidas en esta campaña (SN33 y SN34).


Durante la campaña se realizaron 9 recorridos, 2 hacia la parte norte, 2 hacia la parte nororiental y 2 hacia la parte oriental del volcán, 2 hacia el lado sur y suroccidental y uno al interior de la caldera.

Campaña de gravimetría asociada al reciente proceso eruptivo del volcán Sierra Negra
Fig. 3: Personal del Instituto Geofísico y SFU realizando mediciones con los dos micro-gravímetros en el flanco nororiental, sur occidental y en el centro de la caldea del volcán Sierra Negra respectivamente (Fotografías: E. Gaunt y M. Córdova IG-EPN).


Adicionalmente, se realizó el mantenimiento de los cenizómetros instalados en los flancos del volcán Sierra Negra y dentro de la caldera de este.

Campaña de gravimetría asociada al reciente proceso eruptivo del volcán Sierra Negra
Fig 4. Personal del Instituto Geofísico realizando mantenimiento de un cenizómetro instalado en el punto SN31 localizado en el flanco Sur del volcán Sierra Negra, y el cenizómetro instalado en la estación sísmica de Volcán Chico en el flanco nororiental. (Fotografía: M. Córdova y E. Gaunt IG-EPN).


El Instituto Geofísico de la Escuela Politécnica Nacional mantiene el monitoreo permanente en el volcán Sierra Negra e informará oportunamente de presentarse anomalías en la actividad de dicho volcán.

 

AGRADECIMIENTO: El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) y la Universidad Simon Fraser (SFU), quieren extender un profundo agradecimiento al Parque Nacional Galápagos, a la Unidad Técnica Operativa Isabela y a los Guardaparques por las autorizaciones y facilidades prestadas para el desarrollo de la campaña.

EG/AC/MC/FM
Instituto Geofísico
Escuela Politécnica Nacional

Gracias al apoyo logístico y colaboración del MAATE y el Centro de Turismo de Comunitario (CTC) Lago Verde Quilotoa, un equipo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó una campaña de mediciones de CO2 difuso (dióxido de carbono) y muestreo de aguas en la Laguna del Quilotoa y sus alrededores entre el 28 y 30 de octubre de 2024.

La medición de CO2 difuso en la superficie del lago se ha venido realizando en otros volcanes como Cuicocha desde hace más de 10 años, pero en el Quilotoa es apenas la segunda campaña que se realiza. Estas actividades están enmarcadas en los proyectos ECLAIR financiado por el IRD y el PIGR-22-02, financiado por el Vicerrectorado de Investigación de la Escuela Politécnica Nacional.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 1.- Laguna del Quilotoa vista desde el camino que desciende desde el borde hacia el lago, borde sur-occidental 29/10/2024 (Foto: D. Sierra).


Para llevar a cabo las mediciones de CO2, se utiliza el “método de la cámara de acumulación”, en el cual se usa una campana de aluminio, acoplada a un sensor tipo LI-COR® para determinar el flujo de CO2. Con este instrumento, se realiza un muestreo representativo dentro de toda la laguna, y finalmente mediante técnicas geoestadísticas se elabora un mapa de emisiones de CO2 con el cual se puede obtener el flujo total emitido.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 2.- Medición de CO2 difuso en la superficie de la laguna con el método de la campana de acumulación 29/10/2024 (Fotos: D. Sierra, S. Hidalgo /IG-EPN).


Durante esta campaña los técnicos llevaron a cabo un total de 86 mediciones. Al momento de publicación del presente, los datos están siendo procesados y se emitirá un informe con los resultados.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 3.- Mapa de puntos de muestreo tomados durante la campaña del 29/10/2024. Base Google Earth.


Adicionalmente, se tomó una muestra de agua en la zona de burbujeo localizada al borde sur del lago. También se realizó el muestreo de fuentes termales en todos los alrededores del Volcán incluyendo las vertientes de: Casa Quemada, Chilca Anchi, Kunuk Yaku, Cashapata y Padre Rumi, las muestras están siendo en el Centro de Investigación y Control Ambiental (CICAM) de la EPN, donde se realizará el análisis químico para la determinación de elementos mayoritarios.

Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 4.- Muestreo de vertientes termales en Casa Quemada y Padre Rumi (Fotos. D. Sierra, S. Hidalgo/ IG-EPN).


Mediciones de CO2 en la laguna del volcán Quilotoa
Figura 5.- Muestreo de vertientes de Chilca Anchi y Cashapata (Fotos. D. Sierra, S. Hidalgo/ IG-EPN).


¿Por qué es importante realizar este tipo de mediciones?
El Quilotoa es un volcán que no se ha estudiado por completo, aún se desconoce parte de su historia. Sin embargo, sabemos que su última gran erupción data de apenas hace 800 años. Adicionalmente, se sabe que, en 1797, asociado al fuerte movimiento causado por el sismo de Riobamba, la laguna se agitó fuertemente, liberando una gran cantidad de gases que mataron por asfixia a varias cabezas de ganado, localizadas en el interior del cráter.

El Quilotoa permanece en calma al día de hoy, pero está catalogado como un volcán Potencialmente Activo. Los estudios que el IG-EPN realiza en el volcán nos permiten entender mejor su comportamiento con el fin de prepararse de mejor manera en caso de una eventual reactivación en el futuro.


D. Sierra, S. Hidalgo
Instituto Geofísico
Escuela Politécnica Nacional

Como parte del monitoreo que Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) lleva a cabo en los principales volcanes del Ecuador, un grupo de técnicos del Instituto Geofísico realizó diferentes trabajos de vigilancia en las principales áreas termales del Complejo Volcánico Chiles-Cerro Negro (CV-CCN) entre el 02 y el 04 de octubre de 2024.

Vigilancia de fuentes termales en el complejo volcánico Chiles - Cerro Negro
Figura 1. Volcán Chiles, completamente despejado, observado desde la vía Tulcán-Tufiño, 03 de octubre de 2024. (Foto: D. Sierra/IG-EPN)


El CV-CCN lleva más de 10 años presentado actividad sísmica anómala, que se ha interpretado como un posible signo de reactivación. Durante este tiempo se han presentado al menos dos sismos grandes posiblemente asociados a la actividad del volcán uno en 2014 y otro en 2022, sin que se presente actividad superficial. El panorama de este complejo volcánico es bastante complicado y no ha sido completamente entendido, parece ser que la interacción entre los cuerpos magmáticos, el activo sistema hidrotermal y la presencia de fallas activas en la vecindad de los edificios ha sido la causante de las constantes crisis sísmicas que ha experimentado.

Vigilancia de fuentes termales en el complejo volcánico Chiles - Cerro Negro
Figura 2. A la derecha muestreo de aguas superficiales y medición de parámetros físico químicos en Lagunas Verdes. A la izquierda mediciones MultiGAS en las zonas de gas difuso cercanas a Aguas Verdes. (Fotos: D. Sierra/IG-EPN)


Desde el 2014, los técnicos del IG-EPN llevan a cabo el inventario y muestreo de rutina de las manifestaciones hidrotermales del volcán. A inicios de octubre de este año se realizó una campaña completa donde se realizaron mediciones y muestreos en al menos 11 surgentes de agua y manifestaciones hidrotermales.

Vigilancia de fuentes termales en el complejo volcánico Chiles - Cerro Negro
Figura 3.- Muestreo de Fuentes termales y vertientes en Potrerillos y La Colorada.


Durante la campaña se visitaron los siguientes lugares: Aguas Negras, Aguas Hediondas, Lagunas Verdes, La Colorada, el Hondón, El Artezón, Monte Lodo, Tablones, La Virgen de Tufiño, La Ecuatoriana y Potrerillos. En todos ellos se realizó la medición de parámetros físicos y muestreo de aguas para el análisis de elementos mayoritarios. Las muestras de agua serán analizadas en los laboratorios del Centro de Investigación y Control Ambiental de la EPN (CICAM).

De igual manera se visitó la estación MultiGAS permanente de Aguas Negras, la cual fue instalada en las proximidades de la fuente termal del mismo nombre y está equipada con un sensor de gases y temperatura para la medición en una serie de tiempo continua. La estación está operativa desde fines junio del 2023 tiempo en el cual ha recabado datos que se espera ayudarán a entender mejor la dinámica del complejo volcánico.

Vigilancia de fuentes termales en el complejo volcánico Chiles - Cerro Negro
Figura 4. Muestreo de fuentes termales en Tablones y Montelodo (Fotos: M. Almeida /IG-EPN)


Al momento de emisión de esta nota el Complejo Volcánico Chiles -Cerro Negro Mantiene un nivel de actividad tanto interna catalogada como baja sin cambios y superficial catalogada como muy baja sin cambios.

Vigilancia de fuentes termales en el complejo volcánico Chiles - Cerro Negro
Figura 5. Extracción de datos de la estación MultiGAS y muestreo de fuentes termales en Aguas Negras. (Fotos: M. Almeida /IG-EPN)


 

D. Sierra, M. Almeida
Instituto Geofísico
Escuela Politécnica Nacional

Del 29 al 31 de octubre de 2024, miembros del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron trabajos de campo en el cantón Tena, provincia de Napo.

El propósito central del trabajo fue recolectar muestras de depósitos volcánicos que se encuentran en cortes altos de la ciudad, con el fin de analizarlas y evaluar su posible conexión con los magmas provenientes de centros eruptivos cercanos a la Caldera de Chalupas.

Durante el trabajo de campo se identificaron afloramientos de depósitos de flujos piroclásticos con materia orgánica (carbón), en el barrio 3 de Mayo, cantón Tena, donde fue posible recolectar muestras de pómez de gran tamaño (~30 a 50 cm) y capas de ceniza fina, las mismas que serán analizadas bajo microscópico binocular para observar su composición y texturas características.

Estudios geológicos sobre un gran depósito volcánico en Tena, provincia de Napo
Figura 1. Miembros del equipo realizan estudio del flujo piroclástico en el barrio 3 de Mayo, Tena (Fotografía: IG-EPN)


Estudios geológicos sobre un gran depósito volcánico en Tena, provincia de Napo
Figura 2. Izquierda: Depósito de flujo piroclástico con pómez de ~30 cm. Derecha: Material orgánico (carbón) dentro del depósito (Fotografía: IG-EPN)


Posteriormente se llevarán a cabo análisis de laboratorio más detallados, para establecer la composición de los materiales volcánicos y determinar sus fuentes de origen más probables; así como su posible relación con otros centros volcánicos cercanos. También se realizarán dataciones radiométricas de la materia orgánica recolectada. Estos estudios pueden aportar datos valiosos sobre la historia eruptiva de la zona y contribuir al entendimiento de los mismos.

Estudios geológicos sobre un gran depósito volcánico en Tena, provincia de Napo
Figura 3. El barrio 3 de Mayo se ubica en la parte más alta de Tena y allí se localizan afloramientos de flujos piroclásticos de 8-10 metros de espesor (Fotografía: IG-EPN)


La Caldera de Chalupas está ubicada en la Cordillera Real, al sur oriente del volcán Cotopaxi, en los extremos occidentales de los cantones Tena y Archidona de la provincia de Napo. Hace aproximadamente 211 mil años, el volcán Chalupas experimentó una gran erupción que dio origen a la formación de su caldera. Este evento lo convirtió en uno de los volcanes más grandes y significativos de los Andes del Norte, destacándose por su gran depósito de ceniza y pómez conocido como la Ignimbrita de Chalupas. Este flujo pudiera haber llegado al cantón Tena bajando por el río Jatunyacu, que transcurre 100 km por la Cordillera Real.

Se estima que este depósito cubrió un área de entre 2000 a 3000 km2 con un espesor aproximado de 30 m, razón por la cual la caldera de Chalupas es considerada como un Supervolcán o Megavolcán.

Estos trabajos se realizaron como parte del Proyecto de Investigación PIGR-23-02 del Vicerrectorado de Investigación, Innovación y Vinculación de la Escuela Politécnica Nacional donde participaron MSc. Patricia Mothes directora del proyecto, Ana Chiluisa y Álvaro Monta (estudiante con tema de tesis).

 

Autores: A. Chiluisa, P. Mothes, A. Monta
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional