Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Del 19 al 22 de noviembre de 2024, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la recolección de muestras de ceniza del actual proceso eruptivo del volcán Sangay, e hicieron el mantenimiento de la red de cenizómetros ubicados en las provincias de Morona Santiago y Chimborazo. El volcán Sangay, ubicado en la provincia de Morona Santiago, inició el presente periodo eruptivo en 2019 y al momento su actividad es catalogada como de nivel moderado.

La red de cenizómetros del IG-EPN y de los Observadores Volcánicos (OV) permite evaluar las caídas de ceniza asociadas a la actividad del volcán Sangay. Los resultados de la misión revelan una caída de ceniza de muy leve a leve, con un eje de dispersión tanto para el occidente, como para el oriente. Las comunidades en las cuales más cayó ceniza son Retén Ichubamba y San Antonio de Cebadas de la parroquia Cebadas, cantón Guamote en la provincia de Chimborazo. Además, el 25 de octubre se tuvo un reporte de caída de ceniza en la ciudad de Macas.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay”
Figura 1. Mapa de la proyección de las nubes de ceniza reportadas por la agencia Washington VAAC entre el 16 de septiembre y el 22 de noviembre de 2024. Los círculos negros indican la ubicación de los cenizómetros de Retén Ichubamba y San Antonio de Cebadas y la personita negra indica el único reporte de caída de ceniza obtenido durante este periodo.


Trabajo de campo
Durante la salida de campo, los técnicos del IG-EPN visitaron 30 sitios para realizar el mantenimiento de los cenizómetros y el muestreo de la caída de ceniza asociadas a las emisiones ocurridas entre el entre el 16 de septiembre y el 22 de noviembre de 2024 (Figura 2). En este periodo se han reportado 94 alertas de dispersión de ceniza, con alturas de hasta 1700 metros sobre el nivel de cráter, y una distancia de hasta 165 km desde el volcán, según los reportes satelitales del Centro de Alertas de Ceniza Volcánica de Washington (Washington VAAC), con direcciones preferentes al occidente y oriente (Figura 1).

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay”
Figura 2. Mantenimiento de la red de cenizómetros en la provincia de Chimborazo (Fotos: A. Vásconez y E. Telenchana/IG-EPN).


Los observadores volcánicos también realizaron el mantenimiento de sus cenizómetros y entregaron sus respectivos filtros (Figura 3).

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay”
Figura 3. Revisión del cenizómetro del Observador Volcánico de la comunidad Rayoloma, provincia de Chimborazo (Foto: A. Vásconez/IG-EPN).


Luego de secar y pesar las muestras de ceniza recolectadas durante la campaña de campo, se obtuvieron valores de carga (gramos por metro cuadrado) indicando la cantidad de ceniza que cayó en cada localidad entre el 16 de septiembre y el 22 de noviembre de 2024 (Figura 4). Según la carga, la caída de ceniza es clasificada como caída fuerte (más de 1000 g/m2), moderada (100 – 1000 g/m2), leve (10 – 100 g/m2) y muy leve (0 – 10 g/m2). Los resultados para cada localidad se presentan a continuación:
1. Caída leve: Retén (97.8 g/m2), San Antonio (45.8 g/m2), Flores GAD (32.3 g/m2), San Nicolás (31.3 g/m2), Pancún (29 g/m2), Chauzán 01 (22.9 g/m2), Cebadas 01 (20.6 g/m2), Cebadas 02 (20.1 g/m2), Rayoloma (19.2 g/m2), Cashapamba (16.8 g/m2), Palmira GAD (16.8 g/m2), Chauzán 02 (11.7 g/m2), Alausí (10.3 g/m2).
2. Caída muy leve: Atapo Santa Cruz (9.4 g/m2), Chaguarpata (8.g/m2), Colta GAD (8 g/m2), Juan de Velasco GAD (7.5 g/m2), Guarguallá Chico (6.5 g/m2), Picavos (6.5 g/m2), Luz de América (5.1 g/m2), Hostería Farallón (4.2 g/m2), Pallatanga GAD (4.2 g/m2), Huigra GAD (3.7 g/m2), Vía Oriente Cebadas (2.8 g/m2), Cumandá GAD (2.3 g/m2). Piscinas Atillo (0.9 g/m2), Punto Cero Atillo (0.5 g/m2), Atillo Comunidad (0.5 g/m2).

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay”
Figura 4. Ubicación de los Cenizómetros del Instituto Geofísico (rojo) y de los Observadores Volcánicos (azúl) con la carga de ceniza acumulada entre el 16 de septiembre y el 22 de noviembre de 2024 para el volcán Sangay (Fuente: Google Earth Pro).


Posteriormente, las muestras de ceniza fueron analizadas en el laboratorio del IG-EPN para determinar su contenido, composición y principales características; esto permite obtener información fundamental para una mayor comprensión y evaluación de la amenaza.

Así también, se extrajeron datos de la cámara de vigilancia ubicada en el sector de Picavos-Guarguallá para contar con imágenes del volcán y de su actividad (Figura 5).

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay”
Figura 5. Fotografía del volcán Sangay registrada por la cámara espía de Picavos-Guarguallá el día 28 de septiembre a las 06h00 TL. Se observa el volcán nevado con una emisión leve de gases y ceniza.


E. Telenchana, A Vásconez
Instituto Geofísico
Escuela Politécnica Nacional

Como parte de las tareas de monitoreo de los volcanes activos del Ecuador, un equipo técnico del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), llevó a cabo tareas de vigilancia de la actividad superficial en el campo fumarólico Minas de Azufre, localizado al suroccidente de la caldera del volcán Sierra Negra en Galápagos el 20 y 21 de noviembre de 2024.

El volcán Sierra Negra localizado en la Isla Isabela, se ubica 23 km al NO de Puerto Villamil y tiene una caldera con un diámetro de 7-10km. En su interior, posee un campo fumarólico que cubre un área de al menos 160 mil metros cuadrados distribuido en tres fumarolas de alta, media y baja temperatura.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 1.- Campo fumarólico de minas de Azufre. Fotos: M. Almeida, F. Vásconez/IG-EPN.


Las tareas de vigilancia realizadas por los técnicos incluyeron la medición de concentración de especies gaseosas y la obtención de razones entre ellas utilizando un equipo MultiGAS. Lo cual permite reconstruir la composición original de las especies mayoritarias del gas emitidas por la fumarola y también determinar las concentraciones máximas presentes en el ambiente.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 2.- Medición de especies gaseosas mayoritarias con MultiGAS en la fumarola de baja temperatura. Foto: M. Almeida /IG-EPN.


Hasta 2019 la zona de más baja temperatura registraba emisiones de gas muy energéticas. En 2014 y 2017 las campañas realizadas por el IG-EPN reportaron que la emisión de gases era relativamente alta y que acercarse a la fumarola era muy peligroso por las altas temperaturas y gran cantidad de vapor emanado.

Como se puede apreciar en la Figura 2, la fumarola se ha ido secando, disminuyendo su flujo con el tiempo. Lamentablemente no se tiene registros para los años 2020 y 2021 debido a la pandemia de COVID-19. Al día de hoy, la fumarola emite gas difuso desde el suelo, pero con un flujo bastante bajo. A pesar de que ya no emite vapor, esta fumarola conserva una temperatura de alrededor de 90ºC. Los depósitos de azufre nativo a su alrededor tampoco se aprecian muy frescos, en contraste de lo observado en 2022.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 3.- Evolución de la Fumarola de baja temperatura desde 2014 hasta 2024. Fotos: IG-EPN.


Adicionalmente, durante las tareas de vigilancia se realizó la medición directa de la temperatura de los campos fumarólicos utilizando termocupla con un total de 58 medidas distribuidas en todo el terreno. Estas medidas fueron complementadas con mediciones remotas a través de cámaras térmicas portátiles y un dron equipado con cámara térmica. El uso combinado de estas técnicas permitirá por primera vez mostrar la variación de temperaturas en todo el campo fumarólico.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 4.- Medición directa de temperatura con termocupla, en la fumarola de media y alta temperatura 20/11/2014. Foto: D. Sierra, S. Hidalgo/IG-EPN.


El sobrevuelo con dron permitió también la obtención de ortofotos de las cuales se podrá obtener un Modelo Digital de Terreno (MDT) de alta resolución, para poder tener un mejor control de posibles cambios morfológicos que ocurrieren en la zona.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 5.- Modelo Digital de terreno de la zona de Minas de Azufre, del 20 de agosto de 2024. Imágenes tomadas por M. Almeida, F. Vásconez (IG-EPN). DEMs generados por B. Bernard.


Se realizaron también mediciones Mobile DOAS a través del campo fumarólico. Para determinar el flujo de SO2 emitido por el mismo. Estas serán cotejadas con las mediciones de la estación DOAS fija de Azufral, misma que fue instalada en agosto de 2022 y recoge datos de manera permanente.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 6.- Mantenimiento y extracción de datos, en la estación DOAS permanente de Azufral 20/11/2014. Fotos: M. Almeida, F. Vásconez/IG-EPN.


También se realizó la toma de muestra directa de los gases provenientes de la zona de mayor temperatura. Tras los respectivos análisis se podrá conocer la química completa de los gases emitidos por la fumarola y las composiciones isotópicas de algunos de ellos.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 7.- Muestreo directo de gases en la periferia de la fumarola de alta temperatura 21/11/2024. Fotos: M. Almeida, S. Hidalgo/IG-EPN.


El volcán Sierra Negra ha presentado 7 erupciones en los últimos 70 años, las más recientes ocurrieron en los años 1979, 2005 y 2018. La última de ellas empezó el 26 de junio de 2018 y fue precedida por casi un año de señales premonitoras. La erupción se caracterizó por emisiones de flujos de lava que descendieron principalmente hacia el norte de la caldera en dirección de Bahía Elizabeth.

Trabajos de vigilancia de la actividad superficial en los campos fumarólicos de Minas De Azufre- Galápagos
Figura 8.- Volcán Sierra Negra, mapa de ubicación y distribución de lavas de la erupción de 2018. Vascones, et al (2018). / Erupción de 2018 vista desde Bahía Elizabeth. Foto: servicio de prensa del Parque Nacional Galápagos.


Las temperaturas del campo fumarólico sobrepasan el punto de ebullición del agua y alcanzan los 290ºC en la parte alta. De igual manera, las concentraciones de gas en las fumarolas de media y alta temperatura son bastante elevadas y potencialmente tóxicas, es por esto que el acceso a las mismas se encuentra cerrado. Las actividades turísticas se encuentran limitadas únicamente a la fumarola de baja temperatura. Al momento los datos recolectados están siendo procesados y analizados con miras a la generación del informe respectivo.

El Instituto Geofísico agradece a las autoridades del Parque Nacional Galápagos y al Consejo de Gobierno de las Islas, quienes dieron su aval para que las tareas de monitoreo y mantenimiento puedan realizarse adecuadamente y respetando las normas de conservación del ecosistema. Al momento de la emisión del presente reporte, la actividad del Volcán Sierra Negra es catalogada como superficial baja tendencia sin cambio e interna moderada tendencia sin cambio.


D. Sierra, M. Almeida, S. Hidalgo
Instituto Geofísico
Escuela Politécnica Nacional

El Instituto Geofísico de la Escuela Politécnica Nacional, como entidad clave en la vigilancia de amenazas sísmicas y volcánicas en Ecuador, el 11 de diciembre de 2024, contribuyó al fortalecimiento de la reducción del riesgo de desastres, a través del curso Formación de Formadores para Docentes de la Unidad Educativa José Mejía Lequerica en el sector de Machachi, cantón Mejía. Esta metodología aplicada desde el programa desarrollado por el proyecto “Anticípate por el Cotopaxi”.

Contribución del IG-EPN al fortalecimiento de la reducción del riesgo de desastres en la Unidad Educativa José Mejía Lequerica
Figura 1.- Exposición sobre los fenómenos volcánicos a cargo del personal del IG-EPN (Foto: A. Chiluisa- IG-EPN).


Funcionarios de las áreas de Vulcanología y Sismología del IG-EPN compartieron con los docentes de la unidad educativa los procesos y las herramientas utilizadas para el monitoreo sísmico y volcánico en el país. Explicaron cómo se emplean tecnologías avanzadas como estaciones sísmicas, sensores de gas, GPS, entre otros, para detectar y analizar en tiempo real la actividad sísmica y volcánica; así como también sobre la relevancia de la vigilancia continua para prever posibles eventos asociados a un proceso eruptivo en el volcán Cotopaxi.

Contribución del IG-EPN al fortalecimiento de la reducción del riesgo de desastres en la Unidad Educativa José Mejía Lequerica
Figura 2.- Explicación sobre el monitoreo sísmico y volcánico en tiempo real (Foto: A. Chiluisa- IG-EPN).


Un especial énfasis, para reforzar los conocimientos de los docentes relacionados con los fenómenos asociados a la actividad del volcán Cotopaxi, el impacto de las caídas de ceniza y recomendaciones de que tomar en cuenta en casos de que este fenómeno ocurra, especialmente al encontrarse en sus labores dentro de sus instalaciones. Estas iniciativas permiten fortalecer las estrategias de prevención y respuesta ante emergencias.

La actividad proporcionó una visión más clara sobre la identificación de señales tempranas de actividad volcánica y subrayó la importancia de la preparación y la concienciación comunitaria para mitigar los impactos de estos fenómenos volcánicos en las comunidades.

A. Chiluisa, F. Naranjo, G. Viracucha
Instituto Geofísico
Escuela Politécnica Nacional

Entre el 25 y 28 de noviembre del 2024, integrantes del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional llevaron a cabo una campaña de campo en el volcán Caldera de Chalupas para identificar afloramientos y recolectar muestras de depósitos volcánicos de zonas donde no se tenía información sobre los tipos de depósitos presentes.

La Caldera de Chalupas se encuentra en la cresta de la Cordillera Real, en la región centro-oriental de los Andes Ecuatorianos, en los límites occidentales de los cantones Tena y Archidona de la provincia de Napo. Este volcán, tipo caldera, es uno de los más grandes en los Andes del Norte, lo que ha llevado a que se le denomine en ocasiones "Supervolcán" o "Megavolcán". La última gran erupción que originó la caldera de Chalupas ocurrió hace aproximadamente 211 mil años, produciendo un extenso depósito de ceniza y pómez conocido como la Ignimbrita de Chalupas.

La caldera tiene un diámetro cercano a los 17 km en su eje Este-Oeste y se presenta como una depresión elíptica claramente visible alrededor del volcán Quilindaña, misma que ha sido rellenada con depósitos volcánicos.
El muestreo se llevó a cabo en la zona noreste de la caldera, a lo largo de los márgenes del río Tamboyacu, donde se observaron afloramientos de aproximadamente 40 m de espesor (Figura 1). Estos afloramientos fueron identificados de ambiente fluvial, descartando depósitos eruptivos más recientes (Figura 2).

Trabajos de investigación geológicos en la Caldera de Chalupas
Figura 1. Márgenes del río Tamboyacu. Fotografía: IG-EPN.


Trabajos de investigación geológicos en la Caldera de Chalupas
Figura 2. Depósitos fluviales del río Tamboyacu. Fotografía: IG-EPN.


De igual forma se recogieron muestras en la zona noroccidental en el borde de la caldera de Chalupas correspondientes a depósitos de flujos piroclásticos de pómez y ceniza de color amarillo con una potencia de ̴ 20 m sobre depósitos fluviales (Figura 3) en el margen izquierdo del canal del río Tamboyacu, mismas que serán analizadas bajo microscopio binocular y posterior a esto se realizarán análisis de laboratorio para determinar sus fuentes más probables. Se asume que estos depósitos pertenecen al volcán Cotopaxi

Trabajos de investigación geológicos en la Caldera de Chalupas
Figura 3. Depósitos de pómez amarillos. Fotografía: IG-EPN.


Finalmente, queremos expresar nuestro más sincero agradecimiento a los integrantes de la Hacienda Yanahurco por su amabilidad y colaboración durante esta campaña lo que nos permitió llevar a cabo el muestreo de los diferentes objetivos.

Estos trabajos se realizaron como parte del Proyecto de Investigación PIGR-23-02 del Vicerrectorado de Investigación, Innovación y Vinculación de la Escuela Politécnica Nacional, dirigido por la MSc. Patricia Mothes. Los integrantes de la comisión fueron Marco Córdova, Ana Chiluisa e Isaac Ortega (Pasante de Geología de la EPN).

A. Chiluisa, M. Córdova, P. Mothes.
Instituto Geofísico
Escuela Politécnica Nacional

Durante noviembre de 2024, miembros del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) impartieron el primer Taller de Capacitación sobre la Red de Observadores Volcánicos del Ecuador (ROVE) a vigías del volcán Tungurahua, y a voluntarios de varias comunidades aledañas al volcán Cotopaxi, gracias a las gestiones de la Agencia Adventista de Desarrollo y Recursos Asistenciales (ADRA Ecuador) y del Programa de las Naciones Unidas para el Desarrollo (PNUD), en el marco del proyecto “Anticípate por el Cotopaxi”.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 1. Momentos durante las capacitaciones sobre la ROVE en Baños y Chantilín (Fotos: E. Telenchana /IG-EPN).


El objetivo de este evento fue promover y ampliar la ROVE, con el propósito de informar a más personas sobre los peligros volcánicos y cómo pueden ser afectados por ellos. Además, se busca fomentar que los observadores compartan los conocimientos adquiridos sobre los volcanes y los diferentes fenómenos volcánicos dentro de sus comunidades, con la finalidad de contribuir al bienestar y reducir el impacto en sus poblaciones y medios de vida.

Asimismo, se promueve el intercambio de información entre los observadores, el IG-EPN y otras instituciones de apoyo que forman parte del grupo de WhatsApp que reúne a todos los voluntarios capacitados.

El encuentro con los vigías del volcán Tungurahua se llevó a cabo el 14 de noviembre en la ciudad de Baños. En esta reunión participaron voluntarios de las comunidades de Chacauco, Cusúa, Baños, Pondoa Bajo, Lligua, Ulba, y Palictahua. Este espacio de encuentro entre los vigías del volcán Tungurahua y los técnicos del IG-EPN, a más de la capacitación recibida, permitió el intercambio de conocimientos y experiencias sobre el proceso eruptivo que mantuvo el volcán Tungurahua entre 1999 y 2016.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 2. Capacitación a los vigías del volcán Tungurahua y explicación del aplicativo para celular (Fotos: E. Telenchana /IG-EPN).


En colaboración con los vigías también se llevó a cabo la instalación de recolectores de ceniza (cenizómetros) en las comunidades de Baños, Pondoa Bajo y Chacauco en la provincia de Tungurahua, y Choglontus y Palictahua en la provincia de Chimborazo (Fig. 4). Anteriormente, existía una red de cenizómetros instalada en las proximidades del volcán Tungurahua mientras el volcán estuvo activo, lo cual permitió recolectar muestras de ceniza para entender el proceso eruptivo de dicho volcán. Aunque actualmente el volcán Tungurahua no presenta actividad volcánica, los cenizómetros instalados en el sur del país permitirán la recolección de ceniza volcánica de pulsos eruptivos de otros volcanes, como el Sangay.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 3. Instalación de cenizómetros con los vigías del volcán Tungurahua (Fotos: E. Telenchana y B. Bernard /IG-EPN).


Los días 26 y 27 de noviembre se llevó a cabo la reunión con los voluntarios de los barrios Chantilín GAD Parroquial, Santa Teresita, Chantilín Grande, Unión Narváez, Chantilín Centro que son parte del cantón Saquisilí, y Rancho Saquimalag, San Ramón, Agua Clara Cutuchi, y Langualó Grande pertenecientes al cantón Latacunga. Con ellos se impartieron las temáticas de Ecuador, un país volcánico; ¿Qué es un volcán?; ¿Dónde nos encontramos respecto al volcán Cotopaxi?; Los Peligros Volcánicos asociados al Volcán Cotopaxi; Rol de los Observadores Volcánicos, Práctica y aplicativo para celular para realizar los reportes de observaciones. Además, se atendió las preguntas e inquietudes de los participantes y se abrió un espacio de dialogo con las autoridades.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 4. Momentos durante las capacitaciones en Chantilín y Joseguango Bajo (Fotos: M. Alarcón/ADRA y E. Telenchana /IG-EPN).


Al finalizar cada uno de los cursos, por parte del Proyecto “Anticípate por el Cotopaxi“ se hizo la entrega de Kits con material para realizar la elaboración, instalación y mantenimiento de los cenizómetros a cada uno de los participantes de los diferentes barrios. Con la ayuda de estos materiales e insumos se realizaron cenizómetros conjuntamente con los voluntarios de la ROVE, uno de los cuales se instaló en el edificio del GAD Parroquial de Chantilín.

Talleres de capacitación para formar parte de la Red de Observadores Volcánicos del Ecuador
Figura 5. Entrega de los Kits de Observadores e instalación del cenizómetro en el edificio del GAD Parroquial de Chantilín (Fotos: M. Alarcón/ADRA y V. Guambo/PNUD).


El volcán Cotopaxi estuvo en erupción entre 2022 y 2023, y aunque la erupción fue de baja magnitud y ha llegado a su fin, ha sido un importante recordatorio de lo que significa vivir en las inmediaciones de un volcán activo. Son estos tiempos de relativa calma los mejores momentos para realizar tareas de prevención para el caso de una futura erupción.

E. Telenchana, A. Vásconez, B. Bernard.
Instituto Geofísico
Escuela Politécnica Nacional