Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Fin del proceso eruptivo del volcán Fernandina (La Cumbre)

Informe Especial Volcán Fernandina N° 2024-004
PORTADA: Mapa de los flujos de lava de la erupción del volcán Fernandina (La Cumbre) ocurrida entre marzo y mayo de 2024. El mapa fue elaborado con imágenes satelitales de Sentinel-2 y PlanetScope. Elaborado por: F.J. Vasconez - IG-EPN.


Agradecimientos

El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) agradece al Parque Nacional Galápagos, Ministerio de Medio Ambiente, Agua y Transición Ecológica, SILVERSEA, Universidad de Turín (Italia), Universidad de Leeds (UK), Universidad de Dublín (UK) y Universidad Autónoma de México (México) por su colaboración. Su contribución permitió obtener información relevante para la vigilancia del proceso eruptivo de Fernandina 2024.


Resumen

El 2 de marzo de 2024, a las 23h50 TL (Galápagos), el volcán Fernandina (La Cumbre) inició un nuevo proceso eruptivo el cual terminó entre el 8 y 9 de mayo de 2024, después de ˜68 días de actividad. La erupción se caracterizó por la emisión de gases volcánicos y flujos de lava. Los gases volcánicos, principalmente SO2, tuvieron valores máximos al inicio de la erupción (> 30000 toneladas), pero en los días subsiguientes disminuyeron significativamente. Durante la mayor parte de la erupción las medidas de SO2 fluctuaron entre 100 y 1000 toneladas. Sin embargo, desde el 8 de mayo no se registran valores de SO2 o fueron menores a 10 toneladas.

La erupción se dio a partir de 20 fisuras en el borde superior suroriental de la caldera, con una longitud total de 4,3 km. Todas las fisuras estuvieron activas por un máximo de dos días emitiendo flujos de lava, excepto por la fisura número 13, que fue la única activa durante todo el proceso eruptivo (˜68 días). Esta fisura emitió flujos de lava hacia la zona costera a través de túneles de lava. La tasa de emisión de lava fue de aproximadamente 200 m3/s, al inicio de la erupción, y progresivamente disminuyó a menos de 0,5 m3/s. Los flujos de lava cubrieron un área aproximada de 15,5±0,8 km2 (˜1550 hectáreas) y alcanzaron el mar el día 6 de abril, extendiendo la superficie de la isla en un área aproximada de 0,1 km2 (10 hectáreas).

Se estima que el volumen total de material volcánico emitido durante la erupción fue de ˜60,5±30 millones de m3. Estos valores sugieren que la erupción del volcán Fernandina de este año es posiblemente la más grande de los últimos 40 años; superando a las erupciones ocurridas en los años 1995 y 2009.

Debido al fin de la actividad eruptiva los niveles para el volcán Fernandina son: interna y superficial BAJA con tendencia SIN CAMBIO.

Cómo citar/how to cite: IGEPN (2024) – Informe Volcánico Especial – Fernandina – N° 2024-004.


Anexo técnico-científico

Antecedentes
El volcán Fernandina (La Cumbre) es el volcán activo más occidental de las Islas Galápagos. Desde los años 1800 el volcán Fernandina ha tenido entre 28 y 30 erupciones, siendo esta la mayor tasa de recurrencia de erupciones en las Islas Galápagos. Típicamente, las erupciones en Fernandina se caracterizan por la emisión de gases volcánicos sin contenido de ceniza y de flujos de lava a través de un sistema de fisuras. El sábado 2 de marzo de 2024 a las 23h50 TL (Galápagos) el volcán inició un nuevo periodo eruptivo (IGEPN, 2024) luego de 4 años de su última erupción (IGEPN, 2020a y 2020b). Esta erupción fue el resultado de un proceso de deformación del suelo o “inflación” causado por el ingreso de nuevo material al reservorio magmático somero detectado desde el año 2020 (IGEPN, 2021).


Actividad Interna
La actividad interna se relaciona con los procesos volcánicos que ocurren en zonas subterráneas, es decir, a varios kilómetros de profundidad. Esta actividad es vigilada con estaciones sísmicas, GPS de alta precisión, inclinómetros e instrumentos satelitales. Las medidas obtenidas por estos instrumentos permiten tener una idea general, aunque indirecta, de los procesos que ocurren en estas zonas profundas, que de otra forma son inaccesibles.


Sismicidad
En el sismograma de la figura 1 se observa un evento sísmico de 4.4 Mlv el día 2 de marzo, localizado a 20 km al SE de la isla Fernandina (https://earthquake.usgs.gov/earthquakes/eventpage/us7000m3wt/executive). Posteriormente, se registra un enjambre de sismos pre-eruptivo que empieza a las 22h30 TL (04h30 UTC – recuadro naranja en la figura 1). Una hora y 20 minutos después de dicho enjambre se observa el inicio de la erupción. El sismograma muestra la componente vertical de la estación PAYG, ubicada en la Isla Santa Cruz, a 140 km de la Isla Fernandina para los días 2 y 3 de marzo 2024, donde se aplicó un filtro de frecuencias de entre 2 y 8 Hz.

Informe Especial Volcán Fernandina N° 2024-004
Figura 1: Sismograma de la estación PAYG ubicada en la Isla Santa Cruz a 140 km de la Isla Fernandina en donde se observa la actividad sísmica previa y durante el inicio de la erupción. Las horas están en UTC (Tiempo Universal). Elaborado por: S. Hernández - IG-EPN.


Deformación
Utilizando interferometría radar de apertura sintética (InSAR por sus siglas en inglés) con imágenes de Sentinel-1 de la Agencia Espacial Europea, se obtuvo una serie temporal de la deformación superficial del suelo en el área del centro de la caldera (Figura 2a). Esta serie se generó a partir de imágenes satelitales del periodo entre noviembre 2023 y mayo de 2024. En la serie se observa que antes de la erupción hubo un incremento positivo (inflación) en la deformación del suelo asociado al ingreso de magma al reservorio somero. Por lo contrario, después del inicio de la erupción se observa un decrecimiento (deflación) con una diferencia de ˜10 cm. Esta deflación está asociada a la salida de material volcánico desde zonas profundas debido al proceso eruptivo como tal. Adicionalmente, se dispone del mapa de velocidades (Figura 2b) obtenido mediante imágenes SAR, en el cual se observa deflación (color azul) en el área de la caldera, lo cual es coherente con la pérdida de volumen al interior del reservorio magmático debido a la emisión de los flujos de lava.

Informe Especial Volcán Fernandina N° 2024-004
Figura 2. a) Serie temporal de deformación del volcán Fernandina (La Cumbre) entre noviembre 2023 y mayo 2024 (InSAR-Sentinel-1). Posterior al inicio de la erupción se observa deflación en la superficie de la caldera asociado a la perdida de volumen debido a la erupción. Cortesía: LicSAR COMET b) Mapa de velocidades en el volcán Fernandina entre el 5 y el 17 de mayo de 2024. Los colores azules indican deflación o hundimiento del suelo. Cortesía: LicSAR COMET.


Actividad Superficial
La actividad superficial es aquella relacionada con los procesos volcánicos que ocurren en la superficie, es decir, hacia la atmósfera. La actividad superficial durante la actual erupción de Fernandina se manifiesta con emisiones de gases volcánicos y flujos de lava. La cuantificación adecuada de estos fenómenos permite clasificar una erupción en términos de magnitud (pequeña o grande) e intensidad.


Emisión de gases volcánicos

Desde las 23h50 TL, del 2 de marzo, el satélite geoestacionario GOES-16 registró una emisión de gas de 2-3 km sobre el nivel de la cumbre (snc) con contenido muy bajo de ceniza. La emisión de gas fue intensa hasta las 04h00 TL del 3 de marzo, y posteriormente disminuyó. La nube de gas se dirigió hacia el occidente, nor-occidente y sur-occidente. Los días siguientes se observó nubes de gas de baja altura (< 200 msnc) con dirección predominante hacia el occidente, pero con cambios al oriente, norte y sur, según la dirección de los vientos.

Los sensores satelitales OMI, OMPS y TROPOMI registraron las emisiones de SO2 relacionados con la erupción de Fernandina a lo largo de todo el periodo eruptivo. Dichas medidas son procesadas por diferentes instituciones internacionales como: NASA (Estados Unidos), MOUNTS (México) y DLR (Alemania), y también por el IG-EPN (Figura 3). Las medidas más altas se registraron al inicio de la erupción con > 30000 toneladas. Los días siguientes los valores descendieron fluctuando entre 1000 y 100 toneladas de SO2 (Figura 3). Desde el 8 de mayo estas medidas descendieron rápidamente a cero o por debajo de las 10 toneladas, indicando el fin del proceso eruptivo.

Informe Especial Volcán Fernandina N° 2024-004
Figura 3. Masa de dióxido de azufre SO2 detectada por los diferentes sensores satelitales (OMPS, OMI, TROPOMI) durante el periodo del 3 de marzo al 21 de mayo de 2024. Los puntos verdes son el valor promedio de los diferentes sistemas internacionales mientras que los triángulos rojos son los calculados por el IG-EPN. Las líneas entrecortadas de color verde y rojo indican el promedio móvil cada 3 días para indicar la tendencia de los datos. Nótese que el gráfico está en escala logarítmica. Elaborado por: F.J. Vasconez - IG-EPN.


Adicionalmente, durante la visita de campo del 6 de marzo se obtuvo medidas de SO2 con un DOAS Mobile (Sistema de espectroscopia de absorción óptica diferencial - móvil), el cual detectó concentraciones entre 100 y 120 ppmm, considerados como moderados. También se realizó una travesía en barco para la medición de gases volcánicos utilizando un equipo MultiGAS. Este equipo mide diferentes especies gaseosas provenientes del magma como agua (H2O), dióxido de azufre (SO2), dióxido de carbono (CO2), y ácido sulfhídrico (H2S). Las razones o proporciones entre las concentraciones de estos gases ayudan a tener una visión indirecta de las condiciones del reservorio magmático. Los resultados muestran un máximo de SO2/H2S de 1,3. Este valor es bajo y se asocia a una disminución en la emisión de SO2; lo que es coherente con la disminución de la emisión de SO2 detectada por los sensores satelitales luego del inicio de la erupción. El equipo MultiGAS no detectó valores de dióxido de Carbono, ni de agua durante las mediciones.


Flujos de lava

Las constelaciones de satélites de rango óptico Sentinel-2, Landsat-8 y PlanetScope han permitido seguir la evolución de la erupción en el tiempo cuando las condiciones climáticas han sido adecuadas. Se identificaron 20 fisuras eruptivas distribuidas en el borde externo del flanco suroriental de la caldera. Estas fisuras tienen longitudes de entre 20 y 600 metros y se ubican en las cotas de 1100 y 1200 m sobre el nivel del mar (snm). La extensión total de la zona de las fisuras es de aproximadamente 4,3 km. Además, las imágenes satelitales permitieron elaborar mapas de la zona inundada por flujos de lava y su evolución a lo largo del tiempo (Figura 4). El mayor alcance se dio entre el 3 y 31 de marzo con 11 km mientras que entre el 01 de abril y el fin de la erupción (8-9 de mayo) su recorrido no superó los 2,5 km.

Informe Especial Volcán Fernandina N° 2024-004
Figura 4. Mapas de la zona inundada por flujos de lava entre el 3 de marzo y 19 de mayo de 2024. El recuadro rojo en la figura “a” muestra la zona amplificada del flanco suroriental por la cual los flujos de lava se movilizaron. Los mapas fueron elaborados utilizando imágenes adquiridas por la constelación de satélites PlanetScope. (Elaborado por: S. Vallejo - IG-EPN).


Con la información satelital se determinó que, para el 15 de mayo, el frente del flujo de lava tenía un alcance máximo de 13,4 km superando la línea de costa por aproximadamente 210 metros. Los flujos de lava cubren un área aproximada de ˜15,5±0,8 km2 (˜1550 hectáreas) y la isla creció en 0,1 km2 (10 hectáreas). Además, las imágenes satelitales permitieron observar que las fisuras estuvieron activas por un máximo de dos días, mientras que únicamente la fisura 13 se mantuvo activa durante toda la erupción lo que también se constató durante la visita de campo del 6 de marzo. Esta fisura alimentaba con lava las zonas bajas mediante túneles. Además, se determinó que un área de ˜2,7 km2 fue afectada por incendios debido a la interacción de los flujos de lava calientes con la vegetación circundante, entre 360 m snm y 1300 m snm.

Adicionalmente, los sensores satelitales VIIRS y MODIS detectaron anomalías de calor en la superficie terrestre, dos veces al día, en términos de energía radiante (FRP) en la zona del volcán. Esta información se utilizó para hacer un conteo diario de anomalías térmicas, vigilar el avance de los flujos de lava y elaborar mapas preliminares diarios de las zonas inundadas por los flujos. En la figura 5 se muestran el conteo de anomalías termales y su acumulativo. El día 3 de marzo (inicio de la erupción en UTC) se registró el mayor número de anomalías térmicas con más de 1500. Posteriormente, su número descendió entre 100 y 500 por día. Adicionalmente, se observó valores mínimos los días 13, 19, 21 y 26 de marzo. El número de anomalías termales fue fluctuante debido al proceso eruptivo, la formación de túneles de lava y las condiciones de nubosidad en la zona. Desde el 8 de mayo se observó una disminución significativa en el número de anomalías térmicas que posteriormente vuelve a incrementarse. Sin embargo, estas anomalías, posteriores al 8 de mayo son de baja energía y están posiblemente asociadas al calor remanente de los flujos de lava mientras se enfrían.

Informe Especial Volcán Fernandina N° 2024-004
Figura 5. Conteo diario de anomalías termales reportadas durante la erupción del volcán Fernandina. Fuente: FIRMS (NASA). Elaborado por: F.J. Vasconez - IG-EPN.


La figura 6 muestra la ubicación de las anomalías termales registradas por los sensores VIIRS y reportados por el sistema FIRMS, las variaciones de energía térmica (FRP) y su alcance máximo (en línea recta). Las anomalías térmicas se ubican en el flanco suroriental de Fernandina. Los valores de energía radiante (FRP) fueron más intensos al inicio de la erupción con un máximo de 545,9 MW y posteriormente disminuyeron hasta alcanzar un promedio de 70 MW. Desde el 18 de marzo se observó una disminución en la energía radiante cuyos máximos se mantuvieron entre 100 y 250 MW. Adicionalmente, esta información permitió identificar el arribo de los flujos de lava al mar desde el 6 de abril; cuando los alcances máximos empezaron a sobrepasar el límite de la línea de costa representado por una línea azul entrecortada en la figura 6. Desde el día 9 de mayo los máximos diarios de FRP cayeron por debajo de 100 MW y desde el 11 de mayo por debajo de 20 MW. Valores inferiores a 20 MW están asociados, en este caso, al calor remanente de los flujos de lava durante el tiempo que toma su enfriamiento. Esta información sugiere el fin del proceso eruptivo en Fernandina desde el 9 de mayo de 2024.

Informe Especial Volcán Fernandina N° 2024-004
Figura 6. Mapa de ubicación de las anomalías termales reportadas por FIRMS en el tiempo y variaciones de energía radiante (FRP) y alcance máximo de los flujos de lava. Elaborado por: F.J. Vasconez - IG-EPN utilizando el programa lavaflow mapper (Vasconez et al., 2022).


El alcance diario de los flujos de lava ha ido cambiando según el avance de los flujos de lava hacia cotas más bajas (Figura 7). Para el 3 de marzo el frente del flujo de lava tenía un alcance de ˜6,6 km, para el 4 de marzo de ˜7,9 km, el 18 de marzo ˜9,8 km. Posteriormente, se mantuvo estable hasta el 28 de marzo a una distancia de 9,9 km. A partir del 29 de marzo se observó un nuevo incremento paulatino en el avance de los flujos de lava alcanzando un máximo de ˜13,2 km el 6 de abril (Figura 7). Finalmente, desde el 7 de abril hasta el 6 de mayo el avance del flujo de lava disminuyó significativamente a 0,4 km. Estos valores muestran cambios significativos en las velocidades de avance de los flujos de lava. Para el inicio de la erupción se estimó una velocidad de ˜342 m/h, luego un decaimiento a ˜51 m/h y ˜7 m/h, para el 4 y 18 de marzo, respectivamente (Figura 7). Desde el 29 de marzo se observó un nuevo incremento en la velocidad con un promedio de ˜17 m/h y desde el 7 de abril disminuyó a un promedio de 0,5 m/h hasta el fin de la erupción (Figura 7).

Informe Especial Volcán Fernandina N° 2024-004
Figura 7. Alcance máximo y velocidad del avance del frente de flujos de lava durante la erupción del volcán Fernandina 2024. La información se obtuvo con datos de los sensores satelitales VIIRS (FIRMS). Nótese que el eje de velocidad (derecha) está en escala logarítmica. (Elaborado por: F.J. Vasconez - IG-EPN).


Por otro lado, en colaboración con la Universidad de Turín (Italia), el sistema satelital MIROVA calculó una tasa de extrusión de ˜200 m3/s al inicio de la erupción, la cual decayó exponencialmente hasta estabilizarse a una tasa de ˜5 m3/s, y que posteriormente se redujo a ˜0.5 m3/s (Figura 8a). Adicionalmente, MIROVA estimó un volumen total de lava emitida de ˜60,5±30 millones de m3 (Figura 8b). Estos valores confirman que la actual erupción de Fernandina es la más grande, en términos de volumen emitido, de los últimos 40 años, superando las erupciones de los años 1995 con 55,3 millones de m3 (Bourquin et al., 2009) y de 2009 con 57 millones de m3 (Rowland et al., 2003). La erupción de Fernandina 2024 emitió aproximadamente una masa de 1,35x1011 kg en ˜68 días, lo que implica una magnitud de 4,13 e intensidad de 7,4.

Informe Especial Volcán Fernandina N° 2024-004
Figura 8. Datos del sistema MIROVA. a) Serie temporal de la tasa de emisión de lava. b) Serie temporal del volumen de lava emitido en el tiempo (Cortesía: Diego Coppola – Universidad de Turín, Italia).


Conclusiones
En base a las observaciones realizadas, la actual erupción del volcán Fernandina (La Cumbre) terminó el 8-9 de mayo y tuvo una duración de ˜68 días. Los principales fenómenos asociados a la erupción fueron la emisión de flujos de lava a través de un sistema de fisuras circunferencial en la parte alta del flanco suroriental del volcán, siendo la fisura 13 la más activa a lo largo de la erupción mientras que el resto de las fisuras estuvieron activas únicamente durante los primeros dos días de actividad. Las lavas cubrieron un área aproximada de 15,5±0,8 km2 con un volumen aproximado de ˜60±30 millones de m3. Los flujos de lava llegaron al mar el 6 de abril y extendieron la superficie de la isla en aproximadamente 0,1 km2 (10 hectáreas). Además, las emisiones de gases volcánicos, principalmente SO2, tuvieron un máximo de ˜30000 toneladas al inicio de la erupción y posteriormente fluctuaron entre 100 y 1000 toneladas. El proceso eruptivo finalizó en Fernandina es el más grande de los últimos 40 años. Finalmente, se observó la ocurrencia de incendios asociados a las altas temperaturas de los flujos de lava que entraron en contacto con la vegetación, principalmente entre 360 y 1300 m snm, similar a lo que ocurrió en la erupción de Fernandina de 2017.


Recomendaciones

No existen asentamientos humanos en la Isla Fernandina. Sin embargo, se recomienda a los turistas no acercarse a la zona de depositación de los flujos de lava, aunque la erupción haya terminado. En esta erupción se formaron túneles de lava los cuales son muy inestables y pueden colapsar repentinamente. Además, estas zonas se mantienen calientes y las rocas son muy cortantes. En caso de caída, las personas pueden verse severamente afectadas.


Referencias
Bourquin, J., S. Hidalgo, B. Bernard, P. Ramón, S. Vallejo, and A. Parmigiani (2009). Fernandina volcano eruption, Galápagos Islands, Ecuador: SO2 and thermal field measurements compared with satellite data: Informal report, Instituto Geofísico Escuela Politécnica Nacional (IGEPN).
IGEPN (2020a) - Informe Volcánico Especial – Fernandina – 2020 - N°02 (https://www.igepn.edu.ec/servicios/noticias/1788-informe-especial-del-volcan-fernandina-n-2-2020)
IGEPN (2020b) - Informe Volcánico Especial – Fernandina – 2020 - N°03 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-3-2020)
IGEPN (2021) - Informe Volcánico Especial – Fernandina – 2021 - N°01 (https://www.igepn.edu.ec/servicios/noticias/1792-informe-especial-del-volcan-fernandina-n-1-2021)
IGEPN. (2024). Informe Volcánico Especial – Fernandina – N° 2024-001 (https://www.igepn.edu.ec/servicios/noticias/2106-informe-volcanico-especial-fernandina-n-2024-001)
Lazecký, M., Spaans, K., González, P. J., Maghsoudi, Y., Morishita, Y., Albino, F., ... & Wright, T. J. (2020). LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing, 12(15), 2430.
Rowland, Scott K., Andrew J. L. Harris, Martin J. Wooster, Falk Amelung, Harold Garbeil, Lionel Wilson, and Peter J. Mouginis-Mark. “Volumetric Characteristics of Lava Flows from Interferometric Radar and Multispectral Satellite Data: The 1995 Fernandina and 1998 Cerro Azul Eruptions in the Western Galápagos.” Bulletin of Volcanology 65, no. 5 (July 1, 2003): 311–30. https://doi.org/10.1007/s00445-002-0262-x.
Vasconez, Francisco Javier, Juan Camilo Anzieta, Anais Vásconez Müller, Benjamin Bernard, and Patricio Ramón. “A Near Real-Time and Free Tool for the Preliminary Mapping of Active Lava Flows during Volcanic Crises: The Case of Hotspot Subaerial Eruptions.” Remote Sensing, 2022, 23. https://doi.org/10.3390/rs14143483.


Informes previos

IGEPN. (2024a). Informe Volcánico Especial – Fernandina – N° 2024-001. https://www.igepn.edu.ec/servicios/noticias/2106-informe-volcanico-especial-fernandina-n-2024-001
IGEPN. (2024b). Informe Volcánico Especial – Fernandina – N° 2024-002. https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=31979
IGEPN. (2024c). Informe Volcánico Especial – Fernandina – N° 2024-003. https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=32134

 

Elaborado por: Francisco J. Vasconez, Silvia Vallejo, Santiago Aguiza, Marco Almeida, Stephen Hernández
Revisado por: Pablo Palacios, Benjamín Bernard, Mónica Segovia, Silvana Hidalgo
Con la colaboración de: Diego Coppola (U. Turín, Italia), Sébastien Valade (UNAM, México), Pedro Espín (Universidad de Leeds, Inglaterra).
Corrector de Estilo: Gerardo Pino

Instituto Geofísico
Escuela Politécnica Nacional

Pulso eruptivo del volcán Sangay y caída de ceniza

Informe Volcánico Especial Sangay No. 2023-001
Emisión de gases y ceniza observada por el satélite GOES-16 la madrugada de hoy 02h40 TL.


Resumen
A partir de las 22h00 tiempo local (TL) del 20 de abril de 2023, las estaciones sísmicas de la RENSIG detectaron tremor de emisión correspondiente a un pulso eruptivo del volcán Sangay. Esta señal alcanzó tres picos de actividad, un primer pico a las 23h16 TL, un segundo -más fuerte que el anterior- a las 00h52 TL y un último pico de menor intensidad a las 02h50 TL. Luego la actividad bajó gradualmente hasta desaparecer cerca de las 04h00 TL del 21 de abril de 2023, lo cual indica una duración total del evento de cerca de 6 horas. Posteriormente, a las 11h50 TL se observa otro pulso de actividad, pero menor que los anteriores. Las columnas de ceniza correspondientes a esta erupción alcanzaron alturas de hasta 9 km sobre el nivel de la cumbre (14,3 km snm) y por la dirección de los vientos hacia el occidente han provocado caída de ceniza leve a moderada en las provincias de Chimborazo (cantones Guamote y Pallatanga), Bolívar (cantón Chillanes), Los Ríos (cantones Montalvo, Babahoyo y Baba) y Guayas (cantones Salitre, Bucay, Juján, Simón Bolívar). Este pulso eruptivo es de menor intensidad comparado con los pulsos eruptivos de septiembre 2020 y marzo 2021. En base a los datos compilados hasta el momento, se estima que su índice de explosividad volcánica (VEI, por sus siglas en inglés) fue de 2 en la escala que va de 0 a 8 (Newhall y Self, 1982); lo que lo clasifica como una erupción pequeña. Es importante recordar que estos eventos son comunes en el volcán Sangay y que los principales fenómenos que puede afectar a la ciudadanía son la caída de ceniza y lahares secundarios en caso de que ocurran lluvias fuertes en la zona alta del volcán. El IG-EPN se mantiene en vigilancia permanente e informará oportunamente en caso de detectar cambios en los parámetros de monitoreo del volcán Sangay.


Anexo técnico-científico

Sismicidad
Durante la noche del jueves 20 y la mañana del viernes 21 de abril de 2023, estaciones distales, ubicadas a más de 50 km con respecto al volcán Sangay, registraron episodios de tremor asociados a la emisión de columnas de ceniza. Este tremor alcanzó un primer pico a las 23h16 TL, un segundo pico más fuerte, a las 00h52 TL y un tercer pico de menor intensidad, a las 02h50 TL. El evento duró aproximadamente 6 horas (Figura 1). Posteriormente se registró otro evento puntual a las 11h50 TL.

Informe Volcánico Especial Sangay No. 2023-001
Figura 1. Amplitudes de las señales sísmicas de la erupción del 20 y 21 de abril de 2023 en el Sangay, registradas en 3 estaciones regionales (lejanas al volcán: distancia mayor a 50 km). Las amplitudes son adimensionales (unidades en cuentas), y capturan la ocurrencia de 3 pulsos distintos, con picos que ocurren a las: 23h16, 00h52 y 02h50 tiempo local (TL).


Nubes de ceniza y caídas de ceniza
En imágenes satelitales de GOES-16, el 20 de abril de 2023 desde las 23h00 se observó una primera nube de gas y ceniza que alcanzó una altura máxima de 9 km sobre la cumbre a las 23h30 (14,3 km sobre el nivel del mar) y duró hasta las 00h10 TL del 21 de abril, dirigiéndose hacia el occidente. Una segunda nube de gas y ceniza se formó a partir de las 00h30 TL, alcanzando también 9 km sobre la cumbre y disminuyó gradualmente a partir de la 01h00 TL. Posteriormente, una nube de gas y ceniza de menor altura se formó a partir de las 02h50 TL y disminuyó hasta disiparse a las 04h00 TL. Estas nubes de vapor, gas y ceniza alcanzaron hasta 170 km de distancia al occidente del volcán, causando caídas de ceniza leves a moderadas en las provincias de Chimborazo (cantones Guamote y Pallatanga), Bolívar (cantón Chillanes), Los Ríos (cantones Montalvo, Babahoyo y Baba), y Guayas (cantones Salitre, Bucay, Jujan, Simón Bolívar) (Figs. 2 y 3).

Informe Volcánico Especial Sangay No. 2023-001
Figura 2. Resultado de la simulación de caída de ceniza de Ash3D basada en la observación de las erupciones de la noche del 20 y madrugada del 21 de abril 2023 (altura de 9 km sobre la cumbre, duración de 2,5 horas y un volumen de 0,0024 km3). Los polígonos indican el espesor de la caída de ceniza según la simulación en milímetros. Las figuras negras indican las localidades desde las cuales se reportó caída de ceniza.


Informe Volcánico Especial Sangay No. 2023-001
Figura 3. Fotos enviadas por integrantes de la Red de Observadores Volcánicos (ROVE). Sobre las consecuencias de la caída de ceniza, el día de hoy 21 de abril 2023.


Adicionalmente, desde las 11h50 TL hasta las 14h10 TL del 21 de abril, se observó otra emisión de gas y ceniza en imágenes satelitales. Ésta también se dirige hacia el occidente y es de similar altura que las emisiones anteriores (entre 8 y 9 km sobre la cumbre). Dicha actividad podría causar nuevamente caída de ceniza leve a moderada en las provincias de Chimborazo, Bolívar y Los Ríos.

 

Pronósticos a corto plazo de la actividad del volcán Sangay

Nota de descargo: Los pronósticos a corto plazo se definen en función de la evolución de la actividad reciente del volcán Sangay y presentan los principales fenómenos susceptibles de producirse. El grupo técnico-científico del Instituto Geofísico de la EPN actualiza periódicamente estos pronósticos para un periodo de días a semanas. En el caso de un proceso aproximadamente estacionario, no habrá cambios en los pronósticos. Los pronósticos están sujetos a cambios rápidos si se detectan anomalías en los parámetros de vigilancia volcánica. Los fenómenos naturales como las erupciones volcánicas son impredecibles en cuanto a su magnitud y cronología, por lo que los pronósticos son sólo una guía para la toma de decisiones por parte de las autoridades y del público. Los pronósticos pueden diferir de los escenarios de los mapas de amenaza volcánica en función de las condiciones actuales. El orden de los pronósticos no está basado en cálculos sino en función de las conclusiones de la evaluación de la actividad reciente del volcán.

  1. Más probable: continúa la actividad eruptiva. En este escenario se espera la ocurrencia de nuevas columnas eruptivas de gas y ceniza que pueden alcanzar hasta 9 km sobre el nivel de la cumbre; similares a las registradas en la noche del 20 de abril y en la madrugada y tarde del 21 de abril. Las emisiones pueden provocar caída de ceniza leve a moderada a nivel provincial (principalmente en Chimborazo, Bolívar, Los Ríos y Guayas), dependiendo de la dirección y velocidad del viento. Lahares secundarios pueden formarse por la removilización de la ceniza recién depositada debido a fuertes lluvias en las zonas altas del volcán, principalmente hacia el río Upano.
  2. Menos probable: disminución gradual de la actividad con columnas eruptivas de altura entre 2-6 km sobre la cumbre y caídas de ceniza a nivel cantonal (principalmente en la provincia de Chimborazo), dependiendo de la dirección y velocidad del viento.
  3. Muy poco probable: aumento rápido y significativo de la actividad interna y superficial del volcán con columnas eruptivas altas (>10 km sobre la cumbre) y caídas de ceniza a nivel provincial, flujos piroclásticos y lahares principalmente hacia el río Upano.

 

Recomendaciones generales
Dado que el volcán Sangay se encuentra en una zona remota los principales fenómenos que puede causar afectación a la población son: la caída de ceniza y lahares secundarios. Por esta razón el IG-EPN recomienda: en caso de estar en la zona de caída de ceniza protegerse con mascarilla, gafas de protección y limitar su exposición (más información: http://www.ivhhn.org/es/ash-protection). En caso de ocurrir lluvias fuertes en la zona alta del volcán pueden formarse lahares que descienden por los ríos que nacen en el volcán, principalmente el río Upano que pudiesen afectar la carretera Puyo-Macas, por ello se recomienda vigilar el caudal del río y evitar estar en las cercanías de los mismos.

Mantenerse informado de la evolución de la actividad eruptiva en la página web del Instituto Geofísico y en sus redes sociales Twitter, Facebook y Telegram. Seguir las recomendaciones de las autoridades de gestión de riesgos (SGR y GADs).

El IG-EPN se mantiene atento a la evolución de la actividad en el volcán Sangay e informará oportunamente en caso de detectar cambios en los parámetros de vigilancia.


Elaborado por: B. Bernard, F.J. Vasconez, A. Vásconez, S. Hernández, S. Hidalgo, D. Sierra, S. Aguaiza.
Instituto Geofísico
Escuela Politécnica Nacional

Actualización de la actividad interna y superficial del volcán Sangay

Resumen
Desde el 6 de mayo de 2019, el volcán Sangay presenta una actividad eruptiva catalogada como de nivel moderado a alto, con emisiones casi continuas de gases, ceniza, flujos de lava, flujos piroclásticos y lahares. En las últimas semanas, los parámetros de actividad interna del volcán han mostrado un incremento en la cantidad de explosiones pequeñas, así como una ligera tendencia inflacionaria en todos los flancos del volcán. Por otra parte, los parámetros superficiales muestran una continua emisión de flujos de lava (anomalías térmicas constantes) y ligeros cambios en la morfología del volcán. Este tipo de actividad es muy común en el volcán Sangay, el cual mantiene su actividad tanto interna como superficial en niveles considerados como altos al momento de la realización del presente informe.

Nuevo pulso de actividad en el volcán Sangay

Resumen
Entre los días 01 y 02 de diciembre del año en curso, el volcán Sangay presentó un nuevo pulso de actividad. Esta actividad ha sido observada en las señales de las estaciones permanentes de vigilancia (estación sísmica SAGA y DOAS Atillo), así como, por el satélite SENTINEL-2 y otros sistemas satelitales (p.e., MIROVA). Se registró un incremento progresivo en la actividad sísmica del volcán (sismos de tipo LP, asociado al movimiento de fluidos), seguido de une serie de explosiones con columnas de emisión de hasta 10 km sobre el nivel del cráter y la emisión de un nuevo flujo de lava hacia el flanco norte del volcán. Según informes del SNGRE no se reportaron caídas de ceniza en las poblaciones ubicadas en las zonas cercanas al volcán. En base a los parámetros de vigilancia se evidencia que el proceso eruptivo, iniciado en Mayo de 2019, continúa con una actividad interna y superficial considerada como alta con tendencia ascendente. En consecuencia, se estima que el escenario más probable a corto plazo es que la actividad se mantenga con los mismos fenómenos observados hasta la fecha de publicación de este informe. Sin embargo, no se descarta la posibilidad de una variación repentina en la actividad del volcán, los escenarios eruptivos potenciales están detallados al final del anexo técnico-científico. El Instituto Geofísico de la Escuela Politécnica Nacional se mantiene atento al proceso eruptivo actual del volcán Sangay e informará oportunamente de darse alguna variación en su comportamiento.

Informe Volcánico Especial – Sangay – 2021 - N° 003
Figura 1. Sismicidad asociada a la actividad del 01 al 02 de diciembre en el volcán Sangay. El registro corresponde a los datos enviados a tiempo real por la estación SAGA (Ubicada a 6 km de la cumbre, en el flanco suroccidental del volcán). Con flechas rojas se resaltan en la figura el inicio del enjambre sísmico, así como el registro de la primera explosión y otras consecutivas más pequeñas. Con línea de color amarillo se muestra el progresivo incremento en el número de sismos registrados por la estación, así como su amplitud.


Actividad del 01 - 02 de diciembre
Desde las 16h00 (TL) del 01 de diciembre la estación sísmica SAGA, ubicada al suroccidente del volcán Sangay, registró un enjambre de eventos sísmicos de tipo Largo Período (LP´s; Fig. 1, flecha roja a la izquierda de la imagen), mismos que se asocian al movimiento de fluidos al interior del volcán. Durante este proceso se emitió el primer informe “IG al Instante: (https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=25526)” reportando sobre esta anomalía en la actividad interna de volcán. El número de estos eventos sísmicos se incrementó a una tasa de hasta 60 eventos por hora, desde las 23h56 TL del 01 de diciembre. Los eventos crecieron en amplitud y frecuencia de ocurrencia. Se destaca que fue posible registrarlos en estaciones regionales como PUYO y BULB (Tungurahua). Posterior a esto, se emitió un segundo “IG al Instante: (https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=25528)” informando sobre este incremento en el número de eventos y de las amplitudes.

A las 04h03 (TL) del 02 de diciembre, la estación sísmica SAGA registró una explosión importante (Fig. 1, flecha roja al inferior de la imagen). Posteriormente la Washington VAAC reportó alturas variables de las columnas de emisión entre 7 y 10 km snc (sobre el nivel del cráter). Esta explosión y la dispersión de la columna de emisión fue reportada en dos informes “IG al Instante: (1: https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=25530, 2: https://informes.igepn.edu.ec/igepn-registro-web/pages/public/InformeGenerado.jsf?directorio=25534)” alertando de posible afectación de ceniza. En coordinación con el Servicio Nacional de Gestión de Riesgos y Emergencias (SNGRE) se recabó información acerca de afectación por ceniza volcánica, misma que, con corte hasta las 12h30 TL del 02 de diciembre indica que no se ha registrado caída de ceniza a nivel nacional. Debido a esto podemos concluir que el contenido de ceniza de la columna eruptiva fue leve, sin que alcance a ser transportada hasta las poblaciones más cercanas, ubicada a aproximadamente 25 km del volcán.


Recomendaciones generales

No acercarse a las zonas de peligro del volcán Sangay. En caso de estar en zona de caída de ceniza protegerse con mascarilla, gafas de protección y limitar su exposición (más información: http://www.ivhhn.org/es/ash-protection). Mantenerse informado de la evolución de la actividad eruptiva en la página web del Instituto Geofísico y en sus redes sociales Twitter, Facebook y Telegram. Seguir las recomendaciones de las autoridades de gestión de riesgos (SNGRE y GADs). EL IGEPN se mantiene atento a la evolución de la actividad en el volcán Sangay e informará de sus pormenores.

Los pobladores del cantón Las Naves, provincia de Bolívar, reportaron haber escuchado ruidos extraños similares a cañonazos que vienen desde una gran distancia y estremecen el suelo y que estos ruidos empezaron hace aproximadamente un mes. Cerca de la zona se encuentra el Proyecto Minero Curipamba, administrado por la empresa “Curimining”. Muchos de los pobladores han manifestado su malestar ante la empresa, pensando que estos ruidos provienen de las actividades mineras.

El proyecto de la empresa Curimining se encuentra aún en fase exploratoria, por lo cual no ha empezado la explotación ni ha realizado ningún tipo de voladuras con material explosivo. La empresa, comprometida con informar a la comunidad y con esclarecer el origen de estos ruidos, solicitó la presencia de los técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) para realizar una inspección (Figura 1).

Inspección en la zona de las Naves Provincia de Bolívar por ruidos extraños
Figura 1.- Técnicos del IG-EPN ofrecen una charla a los moradores de la zona y representantes de las organizaciones sociales locales. En la charla se trataron temas como los fenómenos sísmicos, volcánicos y sobre el volcán Sangay como presunto causante de los ruidos en la región. (Fotos: D. Sierra, J.G. Barros /IG-EPN)


Fenómenos similares se han reportado ya en los últimos meses; desde septiembre de 2022, habitantes de las provincias de Guayas, Chimborazo y Los Ríos reportaron haber escuchado bramidos, cañonazos y haber sentido estremecimiento de la tierra. El IG-EPN realizó ya un primer estudio en Naranjal y se determinó que la fuente principal de los ruidos eran las explosiones del volcán Sangay.

La gente se preguntaba, ¿cómo es posible que los ruidos de un volcán tan distante puedan escucharse hasta la costa? La explicación parece provenir de la forma en que viajan las ondas sonoras a través de la atmósfera: ciertos patrones de temperatura de la atmósfera ofrecen caminos rápidos para el viaje de las ondas hasta zonas más lejanas y provocan zonas de sombra en la parte más cercana, de manera que los cañonazos no se perciben en la vecindad del volcán pero se escuchan en zonas distales (Figura 2).

Inspección en la zona de las Naves Provincia de Bolívar por ruidos extraños
Figura 2.- Infografía: ¿Qué son los ruidos al sur del país? (D. Sierra, A. Córdova, P. Palacios)


Los técnicos del IG-EPN se desplazaron hasta Las Naves y colocaron una estación sísmica temporal en la zona de Barranco Colorado; se espera que los ruidos reportados durante el funcionamiento de esta estación (desde la noche del día 27 de enero hasta el mediodía del 29 de enero) ayuden a esclarecer el origen del fenómeno (Figura 3).

Inspección en la zona de las Naves Provincia de Bolívar por ruidos extraños
Figura 3.- Técnicos del IG-EPN se desplazan junto con los técnicos de Curimining y miembros de la comunidad hacia la zona de Barranco Colorado para observar dónde fue instalada la estación sísmica temporal y aprender sobre su funcionamiento. (Fotos: D. Sierra/IG-EPN)


Como parte de la visita, los técnicos del IG-EPN y los miembros de la comunidad se desplazaron hacia la zona de Sabanetillas para inspeccionar una vertiente de agua cercana a dicha localidad. Existe mucha desinformación y rumores en la zona, pues la gente cree que estas manifestaciones de agua termal (sumadas a los ruidos) pudieran deberse al surgimiento de un nuevo volcán o a la probabilidad de que uno de los cerros locales pudiera explotar.

Los técnicos del IG-EPN inspeccionaron la fuente termal, detectando que efectivamente existe una surgente mezclándose con un curso de agua superficial, pero la fuente tiene mayor temperatura, pH y conductividad que el cuerpo de agua circundante. Dado el contexto geológico de nuestro país, el aparecimiento de este tipo manifestaciones hidrotermales es bastante común. Se ha reportado la existencia de varias fuentes termales en la región litoral sin que estén directamente relacionadas con algún tipo de actividad volcánica (Figura 4).

Inspección en la zona de las Naves Provincia de Bolívar por ruidos extraños
Figura 4.- Medición de parámetros físico-químicos y toma de muestras de agua en la zona de Sabanetilla, con la colaboración de moradores de la zona. (Foto: J.G. Barros)


El IG-EPN continúa investigando y los datos obtenidos por el sismógrafo instalado en Barranco Colorado ayudarán a esclarecer el origen de los ruidos que, aunque parecen tener un alcance regional, no parecen significar una amenaza para los moradores de la zona.


D. Sierra, M. Segovia, J.G. Barros
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional