Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...
25 de abril de 2011
En la tarde de hoy la Red Nacional de Sismógrafos del Instituto Geofísico (RENSIG) registró cuatro eventos de origen tectónico  con fuente superficial (alrededor de 12 km), en la zona sur oriental del Ecuador, aproximadamente a 70 km al sur oriente de la ciudad de Macas. Los eventos ocurrieron a las 17:14, 17:16, 17:22 y 17:31 (tiempo local). El sismo más grande fue el de las 17:22 con magnitud 4,6. Hasta el momento se han recibido reportes de que el sismo fue sentido de manera fuerte y prolongada en Macas y en forma leve en Baños.
Instituto Geofísico
Escuela Politécnica Nacional
18:00 (tiempo local)
MS/LT/SV

 

Quito, 29 de octubre de 2011

 

A las 08:50 (tiempo local) de hoy, 29 de octubre de 2011, se registró un evento sísmico de magnitud 4.0 y a 3 km de profundidad en la zona nor oriental de la ciudad de Quito. El epicentro se localizó exactamente a 7 km al sur- oriente de Calderón y a 5.5 km al norte de Puembo, en uno de los ramales de la Falla de Quito.

 

De acuerdo a los reportes recibidos por informes de la Secretaria Nacional de Gestión de Riesgos, redes sociales y llamadas telefónicas de la comunidad, el evento fue percibido en toda la ciudad, incluidos los valles de Tumbaco, Cumbayá y Los Chillos de manera moderada a fuerte. De acuerdo a los reportes iniciales se tenía conocimiento de fisuras y deslizamientos en diversas zonas. Sin embargo, una inspección realizada por personal del Instituto a la zona de Pomasqui constató que en dicho lugar no se presentaron problemas. De acuerdo a los reportes de la Administración zonal de La Delicia del Municipio de Quito, se reportó la desestabilización de un talud de la quebrada del Rio Monjas en el Sector La Antonia en Pomasqui. Además, el Municipio informó que por precaución y para evaluación, el puente sobre el río Chiche ha sido cerrado hasta terminar dicha tarea.

 

Con respecto, al sismo ocurrido a las 13:24 (tiempo local) de este mismo día, de magnitud 4.5, con epicentro a 34 km al sur-occidente de Lumbaqui y a 12 km de profundidad, hay que indicar que no tiene relación con el sismo de Quito, ya que se generó en otro de sistema de fallas. De acuerdo a los reportes las ondas sísmicas generadas por este evento fueron percibidas en Lago Agrio, Tena, Ibarra y en algunos sectores de la ciudad de Quito.

 

A las 15:45 (tiempo local) se registró un sismo a 13 km al nor-oriente del Triunfo a 12 km de profundidad y magnitud 4.6 sentido en Guayaquil, Durán, Catamayo, Cuenca, Riobamba y Ambato. Sin recibirse novedades sobre víctimas o daños.

 

La actividad sísmica registrada durante este día y en diferentes lugares del país, ocurrió en distintas fallas tectónicas y de ninguna manera están relacionadas entre sí.

 

Es importante resaltar que ningún científico del mundo puede pronosticar la ocurrencia de un sismo, es decir, fecha y hora exacta de ocurrencia, tamaño y localización del mismo. Sin embargo debido a que el Ecuador se encuentra en una zona sísmica es necesario que siempre la población tome en cuenta las recomendaciones emitidas por los medios autorizados para enfrentar dichos fenómenos.

 

Instituto Geofísico

Escuela Politécnica Nacional

LT/MS

16:45 (tiempo local)

22 de marzo de 2012

A la madrugada de hoy específicamente entre las 00:49 y 00:56 (tiempo local), se registraron tres sismos de magnitud menor a 2, localizados cerca a la población de Quiroga y con profundidades menores a los 10 km.  A pesar de que son sismos de pequeña magnitud, por su ubicación superficial, fueron reportados ser sentidos por habitantes de la población de Quiroga.

MS/LT

Instituto Geofísico

Escuela Politécnica Nacional

10:40 (tiempo local)

Voice of America - Traducción: G. Merino / Google

Japón es uno de los países mejor preparados en el mundo para hacer frente a la amenaza de un tsunami. Los sistemas de alerta están en su lugar, y las barreras de hormigón anti-tsunamis abarcan gran parte de la línea costera. Pero la ira de la naturaleza del viernes 11 de marzo de 2011 fue demasiado grande para las medidas de protección tomadas por el hombre, planteando la pregunta de ¿qué salió mal?

Kate Woodsome, enviado del diario Voz de América, se comunicó con Synolakis Costas, un experto en el tsunami del Departamento de Ingeniería Civil y Ambiental de la Universidad del Sur de California, para averiguar la respuesta.

¿Qué salió mal con el sistema de alerta de tsunamis del Japón?

"Japón es uno de los países mejor preparados en la Tierra en términos de alerta de tsunamis. Tuvieron una advertencia. Es evidente que lo que salió mal es que no habían previsto la magnitud de este evento. Hay dos razones para ello. La una es que los japoneses no habían tenido ningún evento en su memoria reciente –los últimos 100 ó 150 años-  tan grande como este. Y dos, los sismólogos y geofísicos no habían previsto como un gran terremoto como éste ocurriendo fuera de Japón. Entonces en ambos sentidos, una parte esencial del sistema de alerta es tener mapas de inundaciones y hacer planes para la gente. Creo que ésta es la parte del sistema que ha fallado."

Cuarenta por ciento de las costas de Japón está rodeado de muros de contención de hormigón. ¿Qué papel jugaron en este desastre?

"Los rompeolas de hormigón en muchos lugares en Japón tienen cerca de 10 metros de altura. En Sendai, tenían una altura cercana a los tres metros. Lo que esto muestra entonces es que, al menos en esa zona, que no esperaban una ola de este tamaño, puesto que hubieran construido diques más altos. De varias maneras, el malecón dificultó las cosas (para el tsunami), ya que de seguro es mejor que nada, pero, por otro lado, las olas fueron capturadas y, posiblemente, las personas desarrollaron una falsa sensación de seguridad, y los responsables de emergencias pensaron que había suficiente defensa, lo cual resultó no ser el caso. "

Deberían estas barreras ser rediseñadas, construirse más altas, ¿o es erróneo pensar que el hombre puede mantener a raya a la naturaleza?

"Bueno, ambas cosas. Creo que la nueva forma de pensar que estamos desarrollando en todo el mundo es que tenemos que construir la resiliencia de la comunidad. Esto suena holístico, pero en realidad es mucho más que eso. Una comunidad resilente ante los peligros costeros debe tener capacidad de recuperación, lo cual significa redundancias en todo: energía, transporte, agua, manejo de emergencias, la vivienda, todo. Si se sobreestima o se invierte demasiado en una parte del sistema, como la construcción de defensas costeras, y no se invierte en otras partes, como los sistemas de respaldo o sistemas redundantes, entonces se obtiene lo que acabamos de ver."

El día 27 de diciembre de 2022 se registró un sismo de magnitud 4.1 en la provincia del Guayas; el hipocentro se localizó cerca de Samborondón, por lo que se sintió con bastante fuerza en los alrededores del puerto principal. Lo interesante es que mucha gente en el área afectada reportó haber recibido una notificación en sus celulares, segundos antes o segundos después de haber sentido el evento. Mucha gente se preguntó ¿Cómo es esto posible?

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 1.- Localización revisada del sismo del 27 de diciembre de 2022, en la Provincia del Guayas (Fuente: IG-EPN).


Los Sistemas de Alerta Temprana
Es importante aclarar que los Sistemas de Alerta Temprana (SAT) no predicen la ocurrencia de sismos. Los SAT tienen como objetivo detectar los movimientos sísmicos una vez que estos ya han ocurrido y emiten una alerta para que la gente tenga unos pocos segundos hasta unos pocos minutos (dependiendo a qué distancia se encuentra del epicentro) para prepararse ante la llegada de las ondas sísmicas destructivas.

Hace poco se desarrolló en Quito la IV Asamblea de la Comisión Sismológica de América Latina y el Caribe (LACSC) y el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) fue la institución anfitriona y organizadora. Durante este evento hubo una sesión completa sobre los sistemas de alerta temprana (SAT). Investigadores de todo el mundo presentaron los avances de los sistemas SAT en países como: México, EEUU y Costa Rica. ¿Cómo operan? ¿Qué tan eficaces son? ¿Cuáles son las perspectivas de los SAT en Ecuador y en los diversos países del mundo?

Uno de los sistemas de alerta temprano más efectivos del Mundo es el SASMEX, instalado en la Costa Oeste y Sur de México. Si quieres saber más cómo funcionan los sistemas de alerta temprana tradicionales, y las perspectivas de los SAT en nuestro país, te lo contamos en esta nota: https://www.igepn.edu.ec/interactuamos-con-usted/1972-ponencia-del-dr-gerardo-suarez-sobre-el-sistema-de-alerta-temprano-de-terremotos-en-mexico


El sistema de Alerta Temprana Sísmica de Android

Los Estados Unidos de América son pioneros en materia de sistemas de alerta temprana. En algunos estados está disponible “ShakeAlert”. El Servicio Geológico de Estados Unidos (USGS) ha desplegado una densa red instrumental en la Costa Oeste para detectar terremotos (Figura 2). Esta red analiza los datos para determinar la ubicación y la magnitud de un sismo, luego el sistema envía una alerta de terremoto directamente a los usuarios de teléfonos inteligentes Android.

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 2.- Derecha: Red de estaciones del sistema ShakeAlert en la Costa Oeste de EEUU (Imagen: T. Melbourne/ Central Washington University). Izquierda: Diagrama de flujo mostrando la operación del sistema ShakeAlert de la USGS (Imagen: ShakeAlert/ USGS).


Pero el sistema de alerta sísmica de Android no solo opera en Estados Unidos, funciona en todo el mundo. La diferencia es que en los otros países su funcionamiento es un poco diferente.

Todos los teléfonos móviles inteligentes contienen un acelerómetro muy pequeño, es decir un dispositivo pensado en medir la aceleración que permite al teléfono calcular cuantos pasos damos al caminar, nos permite girar la pantalla, utilizar los juegos y aplicaciones de realidad aumentada, entre otras funciones (Figura 3).

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 3.- Funcionamiento del Acelerómetro y del Giroscopio en un teléfono inteligente Android (Fuente: Smarthphone sensors, Infografía: El Colombiano/ 2016).


Estos acelerómetros permiten también detectar vibraciones y velocidad, señales que indican que pudiera haber un sismo en curso. Los teléfonos conectados al internet, envían estas señales a los servidores de detección de Google, que analiza estas señales y en base a la ubicación de estos teléfonos obtiene una ubicación aproximada del evento. Este método usa los más de 2000 millones de teléfonos Android que existen en el planeta, constituyendo la que probablemente es la red de detección sísmica más grande del mundo. Luego se emite una alerta a los teléfonos que estén en las cercanías (Figura 4).

Para mayor información sobre este sistema visita: https://crisisresponse.google/intl/es/android-alerts/

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 4.- Ejemplo de la emisión de alertas sísmicas en un teléfono Android (Google Crisis Response).


Pero ¿Cuáles son las limitaciones del método?
Si bien contar con una red tan densa de “detectores de sismos” parece ideal, debemos entender que el método tiene varias limitantes. Los acelerómetros de los teléfonos inteligentes, tienen baja resolución así que pudieran no ser capaces de detectar los sismos de baja magnitud, pues obviamente no están diseñados para eso. Otra problemática para este tipo de métodos es la generación de alertas que quizás no respondan a sismos verdaderos.

Adicionalmente, en todo momento se debe tener en mente que los sistemas de alerta temprana no predicen los sismos, sino que disparan una alarma una vez que el sismo ya ha ocurrido. Es por esto que muchas personas en el Guayas recibieron la alerta pocos segundos antes, otros durante y otros incluso después de haber sentido el evento, todo esto en función de su localización geográfica respecto al epicentro.


¿Cómo se localizan los sismos en Ecuador?

La localización de un evento sísmico y el cálculo de la magnitud son más complejos. Si bien los SAT de Android ofrecen localizaciones aproximadas para generar la alerta, son incapaces de ofrecer la localización y magnitud del evento con certeza. En Ecuador, la red sísmica nacional (RENSIG) es operada por el Instituto Geofísico de la EPN, quien es la entidad nacional encargada de la vigilancia de las amenazas sísmicas y volcánicas.

Gracias a la RENSIG y la RENAC, que en conjunto cuentan con más de 200 instrumentos desplegados a nivel nacional, el IG-EPN determina la localización y magnitud de un sismo después de su ocurrencia (Figura 5).

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 5.-Operación del Centro Terras del IG-EPN y distribución actual de la Red Sísmica Nacional Instituto Geofísico, RENSIG (IG-EPN).


El IG-EPN usa el sistema de análisis y procesamiento Seiscomp (Gempa®), de esta manera una computadora analiza las ondas sísmicas, calcula y genera un aviso automático que se emite a través de redes sociales a los 3 minutos de ocurrido el evento, que es el tiempo que le toma al sistema, recibir todas las ondas sísmicas, determinar una localización confiable (matemáticamente estable) y calcular la magnitud. Esto genera una localización PRELIMINAR (Figura 6). Luego un operador calificado, inspecciona las ondas sísmicas de forma manual, ratificando y/o corrigiendo lo que proporcionó el sistema de manera automática y se emite una nueva localización REVISADA (Figura 6), la cual puede variar ligeramente en términos de magnitud y la localización, respecto a la proporcionada automáticamente.

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 6.- Localización Preliminar y Revisada para el sismo del 27-12-2022, ocurrido en Guayas.


Dado que el procesamiento de las señales sísmicas es revisado por un operador, la generación de una solución REVISADA toma unos cuantos minutos en ser emitida al público (aproximadamente 5 minutos adicionales). Sin embargo, podemos tener confianza en que esta localización refleja de manera más adecuada dónde ocurrió el fenómeno y su magnitud más exacta. El Centro Terras del IG-EPN opera 24 horas al día 7 días de la semana para poder emitir información veraz y oportuna en lo que respecta a los fenómenos sísmicos y volcánicos (Figura 7).

Sistemas de alerta temprana sísmica, una nueva propuesta en tu teléfono inteligente
Figura 7.- Infografía sobre la Operación del Centro Terras con Patty la Vulcanóloga, personaje institucional del IG-EPN.


En resumen, las alertas proporcionadas por Google/Android son una propuesta tecnológica muy innovadora. Alertas de este tipo pueden en efecto ser de mucha ayuda y nos pueden servir para tomar medidas de autoprotección en el caso de la ocurrencia de un sismo grande (Figura 4). Sin embargo la alerta será efectiva siempre y cuando, sepamos cómo actuar ante ella y siempre y cuando estemos a una “distancia apropiada” del epicentro del evento (en el orden de 20 km o más), caso contrario, no contaremos con una ventana de tiempo suficientemente grande para reaccionar de una manera adecuada, ya que las ondas sísmicas destructoras viajan muy rápido.


D. Sierra, M Córdova, M. Segovia
Instituto Geofísico
Escuela Politécnica Nacional