Introducción
A inicios del mes de julio de 2023 el IG-EPN puso a disposición del público una Biblioteca Digital que contiene en formato póster todos los Mapas de Amenaza que ha generado a lo largo de sus más de 40 años de trayectoria. Para saber más sobre la biblioteca de mapas del IG-EPN, sigue el siguiente enlace: https://www.igepn.edu.ec/interactuamos-con-usted/2080-la-biblioteca-de-mapas-de-amenaza-del-ig-epn

En los primeros 3 meses, se registraron más de 7 mil descargas de las más de dos docenas de mapas disponibles, siendo los Mapas de Amenazas del Cotopaxi en sus 4 ediciones los que más interés despiertan en el público, debido a su reciente actividad y su alta peligrosidad.

A pesar del esfuerzo realizado durante las últimas 4 décadas, somos conscientes que los mapas de peligros volcánicos pueden resultar complejos de entender y utilizar, tanto para el público en general como para usuarios técnicos especializados. Los mapas elaborados por el IG-EPN desde 1986 pueden tener diferencias entre si, pero su estructura básica es bastante similar y la forma en que deben ser leídos e interpretados conserva una misma lógica. A continuación, te dejamos las directrices básicas para entender los Mapas de Amenazas que componen la Biblioteca Digital del IG-EPN.

El primer paso es entender que los mapas son elaborados en base a uno o varios escenarios eruptivos específicos de cada volcán. Un escenario representa una situación hipotética que describe los fenómenos y efectos de una erupción para un volcán determinado. Cuando es posible, los escenarios se construyen en base a hechos históricos, los cuales son complementados con información geológica y geofísica del volcán obtenida mediante estudios científicos. Su objetivo es definir el tamaño y recurrencia de los fenómenos que serán representados en el mapa, pero la definición de un escenario también ayuda en las tareas de prevención y la planificación de la respuesta ante la ocurrencia de una erupción.

Los escenarios presentes en un mapa tienen diferentes probabilidades de ocurrencia, por lo que es muy importante leer los textos del mapa, pues nos orienta sobre los escenarios representados.

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 1.- Ejemplo del Mapa de Amenazas del Volcán Pululahua de 1988, resaltando la importancia de leer el texto explicativo y la leyenda.


Como se había mencionado, todos los mapas tienen más o menos la misma forma de representar la zonificación de los diferentes fenómenos volcánicos y para ello se utilizan polígonos de diferentes colores. A continuación, se describen las zonas de peligro más comunes representadas en los mapas.


Afectación por Multi-Amenazas Proximales

Las zonas proximales de los volcanes (menos de 10 km alrededor del cráter) son susceptibles a ser afectadas por diversos fenómenos volcánicos, que pueden ocurrir de manera simultánea durante una erupción. Dichos fenómenos suelen ser letales por lo que se los incluye en una sola zona que incluye:

  1. Los proyectiles balísticos. - Fragmentos de roca/lava expulsados violentamente durante una erupción volcánica que pueden ser de hasta tamaños métricos y siguen una trayectoria similar a la de una bala de cañón, es decir una parábola.
  2. Los flujos piroclásticos.- Avalanchas calientes (300-800°C) de gases, ceniza y roca, que descienden por los flancos del volcán, desplazándose a grandes velocidades (75-150 km/h).
  3. Lahares.- Mezclas de agua y material rocoso de origen volcánico, son llamados también flujos de lodo y escombros y se mueven ladera abajo por la fuerza de la gravedad a grandes velocidades.
  4. Flujos de lava.- Roca fundida que alcanza la superficie a altas temperaturas (800-1200°C) y se desplaza por los flancos del volcán a bajas velocidades.

La zona Multi-Amenazas rodea el cráter o centro de emisión. Normalmente, sus límites se definen mediante estudios geológicos o mediante el uso del método del cono de energía. Este método asume que los productos volcánicos se distribuyen de forma cónica desde un punto ubicado encima del cráter y su alcance depende de las pendientes del volcán y de la altura del punto. Los peligros generalmente tienen una distribución radial, siendo siempre más peligroso cuanto más cerca estemos del centro de emisión, sin embargo, la topografía juega un papel crucial en la definición de las zonas de afectación.

Las Zonas de Amenazas Proximales (Multi-Amenazas) están marcadas con tonos de rojo o rosado en los mapas de peligro. Por lo general, los tonos más oscuros corresponden a zonas de mayor amenaza, es decir de escenarios con mayores probabilidades de ocurrencia. Por otro lado, los colores más tenues representan zonas donde la amenaza es menor y/o el escenario es menos probable de ocurrir.

Es importante leer la leyenda del mapa para saber qué representan los colores en cada uno de los casos. Usualmente, los mapas elaborados por el IG-EPN tienen dos o tres gradaciones de color para representar la zona de Multi-Amenazas (Figura 2).

Hay que mencionar que la mayoría de los fenómenos antes descritos se restringen necesariamente a las proximidades de los cráteres, por lo que la posibilidad de ser afectado por un bloque balístico o un flujo de lava por fuera de las zonas de colores rojizos es muy baja o prácticamente nula. Es muy importante también recordar que los escenarios son específicos de cada volcán, por lo que las zonas de peligros proximales no necesariamente representan las mismas probabilidades en todos los mapas.

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 2.- Ejemplo para interpretar los polígonos de afección por Multi-Amenazas, para el Volcán Tungurahua en un escenario VEI= 2-La Peligrosidad: Alta, Media y Baja se ha representado con colores gradados desde el rojo al rosa.


Zonas de Afectación por Lahares

Los lahares secundarios son de tamaños relativamente pequeños y su afectación se restringe a las proximidades del volcán, por lo cual sus efectos están considerados dentro de la zona de multi-amenazas.

Por otra parte, los lahares primarios son aquellos que se forman simultáneamente a una erupción, lo que puede ocurrir debido al derretimiento de los glaciares o la presencia de grandes cuerpos de agua que son afectados directamente por la erupción. Pueden alcanzar volúmenes muy grandes y tener alcances de hasta varias decenas de kilómetros, que son representados de forma separada y específica en los mapas de peligro.

Los polígonos de afectación por lahares han sido representados mayormente con tonos de gris (aunque excepcionalmente se han representado con otros colores). Se ha evitado siempre el uso del color rojo para que el usuario no los confunda con flujos de lava. También se han evitado los colores de la gama del azul para evitar su confusión con flujos de agua, o con el “cauce normal” de los ríos y quebradas que utilizan para movilizarse (Figura 3 y 4).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 3.- A) Ejemplo práctico para visualizar los polígonos de afectación por lahares primarios en un escenario tipo 1877 del Cotopaxi. En la zona proximal se puede ver como los polígonos grises se sobreponen a los correspondientes a la zona de multiamenazas (colores rosado/rojo). B) Las zonas de peligro por lahares primarios pueden alcanzar varias decenas o centenas de kilómetros. En el caso del volcán Cotopaxi, los mapas incluyen zonas muy lejanas como el Valle de los Chillos al Norte, Latacunga y Salcedo al Sur y la ribera del napo-Jatunyaku al Oriente. Debido a que las zonas de afectación por lahares del Cotopaxi son muy extensas, los mapas en formato papel o documento PDF han sido divididos en 3 partes (una para cada drenaje). Todos estos mapas pueden ser descargados del sitio web del IG-EPN: https://www.igepn.edu.ec/mapas-historicos/cotopaxi-2/mapa-amenaza-cotopaxi-vigente-2016.



Zonas de Afectación por Caída de Ceniza (Piroclastos)

La ceniza es material rocoso fino, con diámetro menor a 2 milímetros, que es expulsado por los volcanes durante las erupciones explosivas. Por su pequeño tamaño es susceptible a ser transportada por el viento y afectar extensas zonas, a veces a grandes distancias del volcán, en función de la velocidad y dirección del viento.

La definición de las zonas de mayor probabilidad de caída de ceniza se ha hecho a través de modelos computarizados y a través del reconocimiento de depósitos correspondientes a erupciones pasadas. Estos estudios han permitido definir las zonas de mayor probabilidad de afección por caída de ceniza para determinados escenarios de cada volcán, mismos que han sido expresados en cada uno de los mapas de amenaza.

Los mapas nos muestran áreas de forma elíptica, cuyo borde está definido por líneas entrecortadas. Cada una de estas líneas corresponde a una isópaca (línea de igual espesor). Es decir, una isópaca nos sugiere el espesor de ceniza (expresada normalmente en milímetros o centímetros) que puede caer dentro una elipse.

La Figura 4 nos muestra que la cantidad de ceniza depositada va disminuyendo en dirección del viento a medida que nos alejamos de la fuente (cráter).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 4.- Ilustración de las líneas isópacas de caída de ceniza, que son utilizadas para el mapa del Volcán Guagua Pichincha (2016) mostrando la disminución exponencial en el espesor de los depósitos a medida que nos alejamos de la fuente.


Las elipses que representan la zona de caída de ceniza empiezan en el cono volcánico y se abren en dirección del viento. En el caso del Ecuador, estas elipses están casi siempre orientadas hacia el occidente. Esto se debe a que los vientos que soplan sobre el territorio continental ecuatoriano lo hacen en un 70-80 % del tiempo de este a oeste, es decir, desde el Oriente hacia la Costa. Sin embargo, en algunas ocasiones y en especial entre noviembre y marzo, la dirección del viento es bastante variable.

La Figura 5A muestra las zonas de afectación de ceniza, si una erupción llegara a ocurrir durante un día en el cual el viento estuviera dirigiéndose hacia el occidente (el caso más común). La Figura 5B muestra cómo sería la dispersión de ceniza si una erupción ocurriera en un día en que el viento estuviera alineado en otra dirección (caso menos común), por ejemplo, hacia el norte, y la Figura 5C compila varias posibilidades con diferentes direcciones del viento (norte, sur, este y oeste). En base a estas infinitas posibilidades, los mapas incluyen también un círculo que engloba a todas las elipses y que indica las zonas que pueden ser afectadas por una caída de ceniza en caso de que el viento cambie su dirección habitual.

La Figura 5D nos permite entender cómo la isópaca orientada en dirección preferencial del viento es la zona más susceptible a la caída de ceniza. Sin embargo, el círculo grande muestra todas las zonas que pudieran ser afectadas por caída de ceniza en caso de que el viento cambie su dirección y apunte en cualquier otra dirección.

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 5.- Ejemplificación de la construcción de zonas de caída de ceniza para un escenario eruptivo VEI 3-4 tipo 1877 del Cotopaxi.


Avalancha de Escombros (Colapso de Edificio)

Las avalanchas de escombros son el resultado de “grandes deslizamientos” que pueden ocurrir en las laderas de un volcán. Durante estos eventos se desplazan enormes volúmenes de rocas y otros materiales a altas velocidades y a grandes distancias desde el volcán. Una forma coloquial de explicarlos sería que una porción de una ladera del volcán se desprende y se desliza formando una gran avalancha.

Varios de los volcanes del Arco Cuaternario Ecuatoriano han presentado uno o más eventos de avalancha de escombros durante su desarrollo, pero de todas maneras son fenómenos muy poco frecuentes. Estos eventos han sido representados en los mapas de peligro para los casos de algunos volcanes como por ejemplo el Tungurahua, Reventador, Chiles-Cerro Negro y Cotopaxi. Hay algunos casos de volcanes donde estos fenómenos han ocurrido en el pasado, pero no han sido representados en los mapas debido a que no existen condiciones para que se repitan en el futuro, como es el caso por ejemplo del Guagua Pichincha, entre otros.

En los Mapas de Amenazas, la zonificación corresponde a menudo a los depósitos de las avalanchas pasadas y usualmente son representados como líneas entrecortadas gruesas de color verde/azul. Sin embargo, cabe recalcar que este tipo de fenómenos tienen muy bajas probabilidades de ocurrir. Por esta razón, las avalanchas de escombros no siempre están graficadas en los Mapas de Amenazas, y cuando lo están, es únicamente con fines referenciales (Figura 6).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 6.- Mapa de Peligros del Volcán Tungurahua (2008) mostrando dos líneas entrecortadas (azul y verde) para dos distintos escenarios de Avalancha de Escombros (Colapso de Edificio) con volúmenes de 1km3 y varios km3.


El ejemplo mejor documentado de una avalancha de escombros ocurrió durante la erupción del Mount Saint Helens (EE.UU.) en el año de 1980 (Figura 7).

¿Cómo entender adecuadamente nuestros Mapas de Peligro Volcánico?
Figura 7.- Avalancha de escombros durante la erupción del Mount Saint Helens el 18 de mayo de 1980.


Recuerda, los Mapas de Amenaza Volcánica para los Centros Volcánicos del Arco Ecuatoriano puedes encontrarlos en el sitio web del IG-EPN ingresando al siguiente link: https://www.igepn.edu.ec/mapas-historicos


D. Sierra, D. Andrade, A. Vásconez, B. Bernard.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

El día 12 de diciembre de 2023 falleció “el Negro”, una de las mascotas más queridas del Observatorio del Volcán Tungurahua (OVT). El Negro o “Porky” como le llamaban algunos de los vulcanólogos, acompañó al personal del Instituto Geofísico durante los turnos y largas veladas de vigilancia que implicaban monitorizar un volcán tan activo como lo era el Tungurahua.

Fallece “El Negro”, la Mascota del Observatorio del Tungurahua
Figura 1.- El Negro, vigilante del volcán Tungurahua (Foto: M. Almeida IG-EPN).

 

El volcán Tungurahua permaneció en erupción desde el año 1999 hasta el año 2016. Durante este tiempo el IG-EPN se dedicó a fortalecer las redes de monitoreo en el volcán y a articular el sistema de alerta para salvaguardar la vida de los pobladores de las comunidades aledañas. El Observatorio del Volcán Tungurahua (OVT) se estableció en el año de 1999 pero no fue sino hasta el 2001 cuando se asentó en su sitio definitivo en la Hacienda Guadalupe de la familia Chávez, en el Cantón Pelileo.

Si quieres conocer más sobre el OVT, sigue el siguiente enlace: https://www.igepn.edu.ec/ovt.

La erupción del Tungurahua duró casi dos décadas, tras su última actividad eruptiva el 26 de febrero de 2016 el volcán retornó a la calma. Si bien hoy en día no presenta actividad superficial y su sismicidad se mantiene en niveles bajos, este volcán se considera activo.

Fallece “El Negro”, la Mascota del Observatorio del Tungurahua
Figura 2. Columna eruptiva en el volcán Tungurahua (26/02/2016, Francisco Vásconez, OVT-IG-EPN). Imagen térmica de los depósitos de flujos piroclásticos en el flanco occidental del volcán (26/02/2016, cámara de Mandur, IG-EPN).


“El Negro” fue adoptado por el personal del IG-EPN en el año 2005 y acompañó a los vulcanólogos en sus tareas. Era un perro de temperamento fuerte, pero a la vez cálido y juguetón. Un fiel guardián del observatorio, pero sobre todo una entrañable compañía. La mayoría de los canes les temen a los ruidos de la pirotecnia y las explosiones, pero el Negro no. No había explosión, cañonazo o bramido que le perturbara, él mantenía su mirada fija en el volcán, con un gesto sereno, pero a la vez vigilante.

Tras el cierre del observatorio, en el 2019, “el Negro" se mudó a la casa de la Jefa de Vulcanología del IG-EPN en Cumbayá-Quito. A sus 18 años de edad falleció por causas naturales, pero todos los vulcanólogos lo recordarán como un entrañable miembro del Observatorio del Tungurahua.

Fallece “El Negro”, la Mascota del Observatorio del Tungurahua
Figura 3.- Homenaje a la Memoria del Negro, mascota del Observatorio del Tungurahua (2005-2023).


Instituto Geofísico
Escuela Politécnica nacional

Publicado en Comunidad

La Reunión de Buenas Prácticas para Observatorios Volcánicos (VOBP por sus siglas en inglés) celebró su quinta edición entre el 12 y el 18 de noviembre de 2023 en Pucón, Chile. Este evento, cofinanciado por el Programa de Asistencia de Desastres Volcánicos VDAP del servicio Geológico de Estados Unidos (VDAP, USAID, USGS) y el Istituto Nazionale di Geofisica e Vulcanologia (INGV) de Italia, reunió a representantes de al menos 25 naciones del mundo para discutir sobre metodologías recomendadas para la comunicación (Figura 1). Por parte de Ecuador, el evento contó con la asistencia de dos representantes del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), en su calidad de institución encargada oficialmente de la vigilancia de los eventos sísmicos y volcánicos en el Ecuador mediante Decreto Presidencial del año 2003.

El evento nace de la imperativa necesidad de que los diferentes Observatorios Volcánicos alrededor del mundo discutan sus prácticas y experiencias, tanto positivas como negativas. El encuentro pretende que los observatorios se mantengan organizados y encuentren caminos adecuados para interactuar con sus agencias nacionales y mantener al público informado. Así como homogeneizar el uso y la interpretación de los datos que se generan de las diferentes redes instrumentales instaladas en los diferentes volcanes del planeta.

Representantes del IG-EPN asisten al Volcano Observatory Best Practices Meeting (VOBP 5) en Pucón, Chile
Figura 1.- Paneles de discusión entre los asistentes al VOBP 5 (Foto: D. Sierra).


Entre los temas más discutidos durante el evento estuvieron las comunicaciones con los entes oficiales, los protocolos locales de comunicación, los niveles de alerta, el uso de redes sociales y la futura aplicación de las nuevas técnicas computacionales en el procesamiento y almacenamiento de los datos y la información. El evento contó con ciclos de conferencias y paneles de discusión, se espera que, tras la realización del mismo, las principales conclusiones queden resumidas y plasmadas en un artículo técnico-científico que servirá como apoyo para la comunidad de observatorios volcánicos y la comunidad científica en general.

Durante las sesiones, la Dra. Silvana Hidalgo del área de Vulcanología del IG-EPN ofreció una ponencia (Figura 2) centrada en la evolución de los procesos de comunicación del IG-EPN a través de los años. En la cual hizo hincapié en cómo el establecimiento de la red de vigías del Volcán Tungurahua permitió gestionar de manera exitosa una erupción que se extendió durante casi dos décadas. Así mismo se refirió a otras iniciativas como la creación de la red nacional de observadores volcánicos, los proyectos edu-comunicacionales en la zona de influencia del Sangay, como muchas otras iniciativas encabezadas por el IG-EPN que han ayudado a la difusión y la comunicación de la fenomenología volcánica.

Representantes del IG-EPN asisten al Volcano Observatory Best Practices Meeting (VOBP 5) en Pucón, Chile
Figura 2.- Ponencia de la Dra. Hidalgo del IG-EPN en el VOBP5 (Fotos D. Sierra/IG-EPN).


De igual manera el Dr. Daniel Sierra realizó una breve introducción a su poster centrado en el uso extensivo de personajes caricaturescos y gráficos simplificados como herramienta para la comunicación de fenómenos sísmicos y volcánicos. Se hizo especial alusión al uso de “Patty la Vulcanóloga”, personaje institucional del IG-EPN que hoy es la protagonista de varias campañas comunicacionales, el cual ha sido utilizado desde su lanzamiento en 2017: https://www.igepn.edu.ec/interactuamos-con-usted/1535-lanzamiento-del-personaje-institucional-del-ig-epn.

Representantes del IG-EPN asisten al Volcano Observatory Best Practices Meeting (VOBP 5) en Pucón, Chile
Figura 3.- Dr. Sierra realiza la presentación de un Poster sobre técnicas de comunicación en el VOBP5 (Fotos: E. Mérida/INSIVUMEH; S. Hidalgo/IG-EPN).


Durante el congreso se realizaron ciclos de conferencias, conversatorios, talleres grupales y además los participantes pudieron visitar el Geoparque Mundial Kütralkura de la Unesco que incluye al Volcán Llaima y varias comunidades vecinas. Los Geoparques son territorios que presentan un patrimonio geológico notable en los que se lleva a cabo un proyecto de desarrollo basado en su promoción turística y la conservación.

Representantes del IG-EPN asisten al Volcano Observatory Best Practices Meeting (VOBP 5) en Pucón, Chile
Figura 4.- Participantes del evento visitan el Geositio de interés “Truful Truful” perteneciente al Geoparque Kütralkura.


 

D. Sierra, S. Hidalgo
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Como parte de los esfuerzos y trabajo interinstitucional enfocados a la futura reapertura de la cumbre del volcán Cotopaxi, y dentro de un contexto informativo enfocado en el turismo de montaña responsable, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) imparte charlas informativas sobre los diferentes peligros asociados a campos fumarólicos o cráteres volcánicos activos. La última de estas charlas se llevó a cabo en las oficinas del MAE en el Control Caspi del Ingreso al Parque Nacional Cotopaxi el 22 de noviembre de 2023.

Charlas sobre los Peligros en las Cercanías de Cráteres Volcánicos Activos
Figura 1.- Volcán Cotopaxi, visto desde el occidente el 22/11/2023 (D. Sierra/IG-EPN).


Sabemos que el Ecuador continental posee al menos 84 volcanes (Bernard y Andrade, 2011), de los cuales dos son catalogados actualmente como en erupción: El Reventador y Sangay. Otros, como por ejemplo el Cotopaxi o el Guagua Pichincha, han sido catalogados como Activos pues han mostrado actividad eruptiva dentro de los últimos 500 años y otros como por ejemplo el Chiles-Cerro Negro se consideran potencialmente activos por haber presentado erupciones en los últimos 10 000 años.

Algunos de los volcanes Activos y Potencialmente Activos tienen manifestaciones en superficie, como la presencia de campos fumarólicos con emisión de gases en altas concentraciones y/o temperaturas que pudieran ser potencialmente peligrosos. Así mismo, siempre está latente la posibilidad de la ocurrencia de explosiones inesperadas y otros fenómenos intrínsecos a una zona de influencia volcánica. Por esta razón, el IG-EPN ha manifestado reiterativamente su recomendación de no ingresar a cráteres activos o campos fumarólicos (Figura 2).

Charlas sobre los Peligros en las Cercanías de Cráteres Volcánicos Activos
Figura 2.- Infografía sobre peligros en los cráteres volcánicos y campos fumarólicos (D. Sierra, M. Almeida, S. Hidalgo / IG-EPN).


A lo largo de los años, estos fenómenos han sido causal de lamentables accidentes, muchos de ellos con consecuencias fatales. Algunos han afectado y han enlutado incluso a la propia comunidad científica. Muchas veces el desconocimiento de estos fenómenos, y el hecho de que sean relativamente pequeños a la escala de lo que un volcán es capaz de hacer, han generado una falsa sensación de seguridad en la población, quienes muchas veces obnubilados por los bellos paisajes ingresan a zonas peligrosas desconociendo lo riesgosas que pueden llegar a ser.

El objetivo general de estas jornadas de capacitación es fomentar el conocimiento y aprendizaje sobre las dinámicas volcánicas (Figura 3). De igual manera, se espera que estos encuentros ayuden a tomar decisiones enfocadas en la seguridad de quienes decidan visitar estos sitios. La idea es informar y capacitar a los actores directos para permitir, por ejemplo, que la reapertura de la Cumbre del Cotopaxi se realice de una manera organizada y ofreciendo las garantías mínimas de seguridad para permitir el flujo turístico.

Charlas sobre los Peligros en las Cercanías de Cráteres Volcánicos Activos
Figura 3. M. Almeida del Área de Vulcanología hablando sobre los peligros recurrentes en los cráteres volcánicos activos y campos fumarólicos (Foto: D Sierra, IGEPN).


El volcán Cotopaxi empezó un periodo eruptivo en octubre de 2022, el cual se extendió por varios meses hasta julio de 2023. Hoy en día, se considera que esta erupción ha llegado a su fin. Sin embargo, el ascenso a la cumbre continúa restringido. El período eruptivo 2022-23 fue de baja magnitud, incluso más baja que la registrada durante el periodo eruptivo de 2015. Sin embargo, no se descarta que en los próximos años el volcán Cotopaxi pueda tener actividad eruptiva más importante, semejante a la que ha sido plasmada en los Mapas de Amenaza, mismos que representan una erupción relativamente grande (similar a la acaecida en el año de 1877). Por esto lo más importante es permanecer preparados e informados.

Durante las jornadas de capacitación se imparten conceptos básicos de vulcanología y se discuten casos de accidentes documentados, en los cuales se detalla el impacto que ciertos fenómenos volcánicos pueden tener sobre el ser humano. Además, se comparten ciertas recomendaciones que podrían ayudar a salvar vidas en caso de un evento adverso. El uso de indumentaria de seguridad, el establecimiento de canales de comunicación bidireccional, la zonificación de los peligros y la señalización son algunas de las recomendaciones.

Entre los asistentes a este tipo de charlas están los miembros de organismos de rescate, asociaciones de guías de alta montaña, operadores turísticos, así como autoridades y funcionarios que están involucrados en la administración de los sitios turísticos como el Ministerio de Ambiente (Figura 4).

Charlas sobre los Peligros en las Cercanías de Cráteres Volcánicos Activos
Figura 4. D. Sierra del Área de Vulcanología realiza una exposición sobre la actividad actual del volcán Cotopaxi y las técnicas de vigilancia volcánica (Foto: M Almeida, IGEPN).


El Instituto Geofísico extiende un agradecimiento por la coordinación y participación de la Secretaría de Gestión de Riesgos, el Parque Nacional Cotopaxi, ASEGUIM y OPTUR, para la difusión de estas conferencias. Así mismo, exhorta a la comunidad de montaña a ser parte de estas capacitaciones y a respetar las normas vigentes de acceso a las diferentes zonas consideradas como potencialmente peligrosas (por ejemplo: ingreso al fondo del cráter del volcán Guagua Pichincha, ascenso a la cumbre del volcán Cotopaxi, etc.)


Autores: M. Almeida, D. Sierra
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Entre el 25 y 27 de octubre de 2023, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron actividades de vigilancia volcánica y adquisición de datos geomorfológicos en el volcán El Reventador, ubicado en el límite entre las provincias de Napo y Sucumbíos.

Trabajo de campo
El Reventador es uno de los volcanes más activos del país. Desde 2002, su actividad eruptiva está catalogada de moderada a alta, caracterizada por flujos de lava, explosiones y emisiones de ceniza.

Durante la visita de campo, las cámaras visuales y térmicas permitieron a los técnicos del IG-EPN registrar detalladamente la actividad del volcán (Figura 1). Utilizando aeronaves pilotadas a distancia (RPAs), se pudo observar que actualmente no hay flujos de lava activos en el volcán y que se están emitiendo nubes de ceniza desde dos cráteres, uno al sureste y otro al noroeste (Figura 2). Los datos obtenidos con los RPAs serán utilizados para estudios geomorfológicos del volcán.

Vigilancia volcánica y estudio geomorfológico en el volcán El Reventador
Figura 1. Vigilancia del volcán El Reventador con cámaras fijas (izquierda) y RPAs (derecha) (Fotos: A. Vásconez/IG-EPN).
Vigilancia volcánica y estudio geomorfológico en el volcán El Reventador
Figura 2. Ortofoto (izquierda) y modelo digital de elevación (derecha) del volcán El Reventador reconstruida en base a varias imágenes tomadas con un RPA (Figuras: B. Bernard/IG-EPN).


Además, se ha observado que las erupciones son menos energéticas que en años anteriores. La baja carga de ceniza en las emisiones también fue confirmada por caídas de ceniza muy leves a leves los días 26 y 27 de octubre a 3,6 km al este-sureste del cráter (Figura 3). Para realizar un seguimiento continuo de la caída de ceniza, los técnicos del IG-EPN instalaron dos cenizómetros a 3,6 y 7,4 kilómetros al este-sureste del cráter del Reventador, en el cantón de Chaco, provincia de Napo (Figura 3).

Vigilancia volcánica y estudio geomorfológico en el volcán El Reventador
Figura 3. Izquierda: Caída de ceniza leve sobre un panel solar el día 27/10/2023. Centro y Derecha: Instalación de dos cenizómetros al este-sureste del cráter del Reventador (Fotos: A. Vásconez/IG-EPN).


Los cenizómetros son contenedores especialmente diseñados para recoger muestras de ceniza no contaminadas. Las muestras obtenidas permiten controlar periódicamente la dispersión y el volumen de cenizas emitidas por los volcanes. Posteriormente las muestras se analizan en el laboratorio para determinar su tamaño y su composición, y evaluar su peligrosidad. Esta información sirve para complementar la vigilancia instrumental del volcán.

Se extiende un agradecimiento al Ministerio del Ambiente, Agua y Transición Ecológica (MAATE), y a la Dirección General de Aviación Civil (DGAC) por los permisos correspondientes para realizar estas actividades.

Anais Vásconez, Benjamin Bernard
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

El viernes 27 de octubre de 2023, miembros del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) participaron del “1er Coloquio Academia-Sector Productivo” organizado por la Universidad de Investigación de Tecnología Experimental Yachay - UITEY.

El IGEPN participó con un stand donde mediante exposiciones dio a conocer al público los servicios que ofrece con respecto a los peligros sísmicos y volcánicos en el Ecuador mediante maquetas y gigantografías didácticas (Fig.1). También se atendieron dudas muy puntuales de los asistentes.

Participación del IG-EPN en el '1er Coloquio Academia - Sector Productivo' organizado por la Universidad Yachay Tech
Figura 1. Miembros del IG-EPN en su stand, explicando al público concurrente al Evento sobre los peligros sísmicos y volcánicos (Fotos: S. Aguaiza y E. Telenchana/IG-EPN).


Del mismo modo, tuvo una intervención dentro de la sección de Ponencias Magistrales que estaban planificadas en la Agenda del Evento. Mediante el video de celebración de los 40 años del Instituto Geofísico se proveyó al público asistente un rápido resumen de lo que es el Instituto y las actividades que realiza en pro de la sociedad. Además, se mencionó trabajos puntuales que el IG-EPN ha realizado y puede realizar ante requerimientos de empresas o instituciones. Al finalizar la presentación, delegados del evento entregaron un certificado al IG-EPN por su participación.

Participación del IG-EPN en el '1er Coloquio Academia - Sector Productivo' organizado por la Universidad Yachay Tech
Figura 2. Momentos durante la ponencia del IG-EPN al público participante del “1er Coloquito Academia-Sector Productivo” (Fotos: S. Aguaiza y E. Telenchana/IG-EPN).


E. Telenchana, S. Aguaiza
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Gracias al apoyo logístico del GAD Municipal de Santa Ana de Cotacachi, a través de la Empresa Pública de Energía Renovable y Turismo, Cotacachi E.P., y a la autorización del Ministerio de Ambiente -Reserva Ecológica Cotacachi-Cayapas., un equipo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó una campaña de mediciones de CO2 difuso (dióxido de carbono) y muestreo de aguas en la Laguna de Cuicocha (Figura. 1) entre el 24 y 25 de octubre de 2023.

Campaña de medición de CO2 difuso en la laguna de Cuicocha - Octubre 2023
Figura 1.- Laguna de Cuicocha con sus islotes Wolf y Yerovi. (Foto: D. Sierra, IG-EPN).


Desde 2011 este tipo de mediciones se realizan en la laguna de Cuicocha como parte de las tareas de vigilancia periódica y de rutina que el IG-EPN desempeña. Tras más de una década de campañas de monitoreo, la Caldera de Cuicocha se ha convertido en una de las lagunas volcánicas mejor vigiladas de todo el mundo.

Para llevar a cabo las mediciones de CO2, se utiliza el “método de la cámara de acumulación” (Figura. 2), en el cual se usa una campana de aluminio, acoplada a un sensor tipo LI-COR® para determinar el flujo de CO2. Con este instrumento, se realiza un muestreo representativo alrededor de toda la laguna, y finalmente mediante técnicas geoestadísticas se elabora un mapa de emisiones de CO2 con el cual se puede obtener un flujo total emitido.

Campaña de medición de CO2 difuso en la laguna de Cuicocha - Octubre 2023
Figura 2.- Técnicos del IG-EPN realizan mediciones de CO2 difuso con el método de la campana de acumulación en Cuicocha el 24 y 25 de octubre de 2023 (Fotos: D. Sierra y M. Almeida, IG-EPN).


Durante la última campaña, los técnicos llevaron a cabo un total de 110 mediciones. Al momento de publicación del presente informativo, los datos obtenidos están siendo procesados y se espera la próxima emisión de un informe.

Campaña de medición de CO2 difuso en la laguna de Cuicocha - Octubre 2023
Figura 3.- Malla de puntos de medición de flujo de CO2 difuso en la Laguna de Cuicocha entre el 16 y 17 de agosto de 2023 (Base: Garmin etrex Summit HC – Base Camp – Google Earth).


Finalmente, se tomó una muestra de agua en la zona de burbujeo localizada al NW del Islote Yerovi. La muestra será analizada en el Centro de Investigación y Control Ambiental (CICAM) de la EPN, donde se realizará el análisis químico para la determinación de elementos mayoritarios.

Al momento de la publicación de este informe la actividad de la Caldera Cuicocha es catalogada como INTERNA BAJA, sin cambio, y SUPERFICIAL MUY BAJA, sin cambios.

 

D. Sierra, M. Almeida
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) celebró 40 años de vida institucional al servicio del Ecuador en el diagnóstico y vigilancia de los peligros sísmicos y volcánicos en el territorio nacional (figura 1).

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 1.- Inauguración de la Sesión Solemne, entonación del Himno Nacional del Ecuador (DIRCOM-EPN).


En un evento conmemorativo, realizado el pasado 6 de octubre de 2023, la destacada labor del IG-EPN recibió reconocimientos por parte de las autoridades del Gobierno nacional, de la Prefectura de Pichincha, del Municipio de Quito y de colaboradores e instituciones científicas nacionales e internacionales.

Además, contó con la presencia del vulcanólogo estadounidense Dr. Minard Hall, quien fue profesor de Geología de la EPN y fundó el Instituto en el año 1983, junto con el Dr. Hugo Yepes.

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 2.-Dr. Minard Hall y Dr. Huyo Yépez cofundadores del IG-EPN reciben reconocimiento (DIRCOM-EPN).


El Dr. Mario Ruiz, director del IG, manifestó su agradecimiento al equipo de profesionales que integran la entidad. “En este evento, a más de celebrar los sueños y los esfuerzos de quienes fundaron este importante instituto, también celebramos los sueños de quienes continúan con este legado”, resaltó.

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 3.- Palabras del Dr. Mario Ruiz, Director del IG-EPN (DIRCOM-EPN).


También, se hizo un reconocimiento a los vigías del volcán ‘Guagua’ Pichincha, Hugo Yuccha y Rodrigo Viracucha; al TCrn. EM. Avc. Álvaro Mejía del “Escuadrón Tucanes”, por su colaboración en la vigilancia aérea del volcán Cotopaxi; al MSc. Patricio Ramón, por su gestión en la creación del Observatorio del Volcán Tungurahua; y al Dr. Hall y al Dr. Yepes, como creadores del IG-EPN y por su apoyo en la formación de nuevos profesionales para la entidad (Figura 4).

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 4.- Vigías del Volcán GGP, Representantes del Escuadrón Tucanes y publico asistente al evento (DIRCOM-EPN).


Por su parte, la Dra. Florinella Muñoz, rectora de la EPN, destacó el aporte que el Instituto entrega al país. “Es un ejemplo de cómo la academia se vincula con la problemática real de una Nación y, a través de la investigación, busca comprender lo que sucede con los movimientos de la Tierra (…) Es un orgullo para la Escuela Politécnica Nacional contar con el Instituto Geofísico y su red de investigadores que se despliega por todo el país”, señaló (Figura 5).

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 5.- Palabras de la Dra. Florinella Muñoz, Rectora de la Escuela Politécnica Nacional (DIRCOM-EPN).


La Prefectura de Pichincha, a través del Viceprefecto Alexandro Tonello, entregó al Instituto la Condecoración “Libertadora Manuela Sáenz” en el grado Medalla al Mérito “Eloy Alfaro”. Tonello manifestó que, gracias al trabajo del IG, la Prefectura ha desarrollado el Plan provincial de respuesta frente a la erupción volcánica (Figura 6).

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 6.- El Viceprefecto de Pichincha, Alexandro Tonell, entrega la condecoración al IG-EPN.


En tanto, el alcalde de Quito, Pabel Muñoz envió sus felicitaciones mediante un video, en el que señaló: “mi abrazo y reconocimiento de la Alcaldía, de quiteños y quiteñas, que podemos dormir tranquilos porque hay gente como ustedes, entregada las 24 horas del día para darle tranquilidad al país y a Quito”.

El Instituto Geofísico de la Escuela Politécnica Nacional conmemoró 40 años de vida institucional al servicio del Ecuador
Figura 7.- Palabras del Msc. Cristian Torres, Secretario de Gestión de Riesgos (DIRCOM-EPN).


Cristian Torres, titular de la Secretaría de Gestión de Riesgos, resaltó el trabajo que realiza el IG en el monitoreo permanente del volcán Cotopaxi; y detalló los proyectos de inversión que tiene la cartera de Estado con el organismo:

  • De conocimiento volcánico, con un presupuesto de $5 millones, del que ya se hizo el primer desembolso de $850 mil al IG-EPN en 2023 y que se ejecutará hasta el 2025.
  • Proyecto para Fortalecer el Sistema de Alerta Temprana Multiamenazas del Ecuador, con un presupuesto asignado de $1,4 millones para 2024.
  • Piloto de aviso temprano de sismos (en proceso).


El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) mantiene firme la labor que, bajo Decreto Ejecutivo de 2013, le fue encomendado para el diagnóstico y la vigilancia de los peligros sísmicos y volcánicos; y hace un llamado a las autoridades competentes a fortalecer lazos de trabajo conjunto en beneficio de la sociedad ecuatoriana.


Dirección de Comunicación
Escuela Politécnica Nacional

Publicado en Comunidad

Como parte del monitoreo de rutina que el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realiza en los volcanes del Ecuador, personal del área de vulcanología del IG-EPN realizó trabajos de vigilancia en el Complejo Volcánico Pichincha. Estos trabajos comprendieron la vigilancia de las anomalías termales del cráter y la visita a las fuentes termales de la zona distal, realizados el día 20 de octubre de 2023.

El clima durante el ascenso al borde nororiental del cráter estuvo dominado por fuertes vientos y constante nubosidad con vientos que alcanzaron temperaturas de -2ºC. A pesar de las nubes, que impedían la visibilidad directa del cráter, la cámara térmica pudo mostrar las anomalías asociadas a los campos fumarólicos. El análisis de las secuencias termales obtenidas muestra que las anomalías termales no se han extendido; sin embargo, las temperaturas reflejadas en el procesamiento son bastante bajas y no representan una medida de temperatura-máxima-aparente del todo confiable. De cualquier forma, no se observaron cambios en la extensión de los campos fumarólicos, con excepción de una pequeña anomalía en la naciente del río Cristal (Figura 1); sin embargo, esta deberá ser confirmada con una nueva realización de mediciones en un día con mejores condiciones atmosféricas.

Medición de parámetros fisicoquímicos en fuentes termales distales del Complejo Volcánico Pichincha
Figura 1.- Captura de imágenes térmicas desde el borde oriental del cráter del volcán Guagua Pichincha (Fotos: M. Almeida, D. Sierra - IG-EPN).


Adicionalmente, se llevó a cabo la vigilancia de las fuentes termales de la zona distal, ubicadas al suroccidente del Guagua Pichincha. Se visitaron los balnearios: Urauco, Rancho Piedras Grandes y Las Acacias (Figura 2). Se realizó una medición de los parámetros físico químicos y un muestreo para el análisis de las especies mayoritarias. Los análisis serán realizados en el Centro de Investigación y Control Ambiental de la EPN (CICAM).

Medición de parámetros fisicoquímicos en fuentes termales distales del Complejo Volcánico Pichincha
Figura 2.- Fuentes termales del Balneario Rancho Piedras Grandes (Fotos: M. Almeida, D. Sierra - IG-EPN).


Al momento de la emisión del presente informativo la actividad superficial del volcán Guagua Pichincha es catalogada como muy baja sin cambios y la actividad interna como baja, sin cambios. Sin embargo, al tratarse de un volcán activo se recuerda a la población que el descenso al cráter se encuentra restringido. Se sabe que en cualquier momento pueden producirse pequeñas explosiones freáticas sin previo aviso; así mismo, puede ocurrir la liberación repentina de gases en altas concentraciones misma que no puede ser anticipada (Figura 3.)

Medición de parámetros fisicoquímicos en fuentes termales distales del Complejo Volcánico Pichincha
Figura 3.- Infografía sobre la peligrosidad de ingresar en cráteres de volcanes activos.


MA, DS
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Miembros del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) participaron de la visita de campo del Proyecto “VULNERABILIDAD DE LA AGRICULTURA Y GANADERÍA A LA CAÍDA DE CENIZAS DE LOS VOLCANES TUNGURAHUA Y SANGAY” del 4 al 8 y del 11 al 15 de septiembre de 2023.

El objetivo del trabajo de campo era recolectar datos de los agricultores para evaluar la vulnerabilidad de su sistema agrario a la caída de cenizas volcánicas. El Proyecto es ejecutado por Investigadores de la Facultad de Bioingeniería de la Université Catholique de Louvain, Bélgica, en coordinación con el IG-EPN. El trabajo consistía en realizar entrevistas detalladas a los agricultores para obtener información que permita caracterizar el sistema agrario en detalle, tanto en lo que respecta a su estructura como a su funcionamiento.

La semana del 4 al 8 de septiembre de 2023 se trabajó con agricultores de cinco comunidades aledañas al volcán Tungurahua (Fig. 1), como Pondoa, Bilbao, Chacauco, Palictahua y Choglontus. Actualmente el volcán presenta una actividad catalogada como baja, desde su ultimo periodo eruptivo (1999-2016). Aunque el volcán no se encuentra activo, las comunidades fueron afectadas fuertemente por las caídas de ceniza, por ello, la experiencia de las personas entrevistadas fue de gran ayuda para los investigadores.

Participación de la visita de campo del Proyecto “Vulnerabilidad de la Agricultura y Ganadería a la Caída de Cenizas del Volcán Tungurahua y Sangay”
Figura 1. Momentos durante la visita de campo a las personas entrevistadas en las comunidades de Pondoa, Chacauco y Choglontus. (Fotos: E. Telenchana/IG-EPN).


Por otro lado, la semana del 11 al 15 de septiembre de 2023 se realizó la visita de campo a agricultores de cinco comunidades ubicadas al occidente del volcán Sangay (Fig. 2), como Guarguallá Chico, Ishbug Utucun, Pancun Ichubamba, Chauzán-San Alfonso y Atapo Santa Cruz. Desde 2019, el volcán Sangay presenta una actividad eruptiva catalogada como de nivel moderado a alto, con constantes emisiones y caídas de ceniza que han afectado las comunidades localizadas al occidente del volcán. Las personas entrevistadas contaron como han lidiado con las caídas para salvaguardar su salud, la de sus animales, y tratar de no perder sus productos agrícolas.

Participación de la visita de campo del Proyecto “Vulnerabilidad de la Agricultura y Ganadería a la Caída de Cenizas del Volcán Tungurahua y Sangay”
Figura 2. Momentos durante la visita de campo a las personas entrevistadas en las comunidades de Ishbug Utucún y Atapo Santa Cruz (Fotos: A. Vásconez y E. Telenchana/IG-EPN).


Finalmente, con estos datos los investigadores buscaran cuantificar la vulnerabilidad de los sistemas agrarios y poder identificar el punto débil del sistema, para proponer recomendaciones sobre las prácticas agrícolas y ganaderas que deben adoptarse para reducir la vulnerabilidad.


E. Telenchana, A. Vásconez.
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad