Desde enero del 2016 hasta la fecha (24/08) la actividad interna del volcán Cotopaxi se ha mantenido BAJA caracterizada por pocos eventos sísmicos. A nivel superficial la actividad se manifiesta con pequeñas emisiones intermitentes de gas. Generalmente, éstas se mantinen al nivel del cráter y solo en contadas ocaciones superan los 500 metros. Los vientos del mes de agosto (3-10 m/s) orientados predominantemente de oriente a occidente producen un efecto aerodinámico debido a la topografía del cono volcánico, este efecto hace que las emisiones de gases se deslicen por el flanco occidental del volcán removilizando el material volcánico (ceniza) depositado durante el periodo eruptivo de agosto-noviembre 2015. La removilización de este material previamente depositado produce una nube de polvo misma que ha sido reportada al IG-EPN por los visitantes del Parque Nacional Cotopaxi y los vigías de la zona y que es claramente visible en días despejados (Fig. 1). La actividad interna del volcán de acuerdo a los parámetros monitorizados por el  Instituto Geofísico de la Escuela Politécnica Nacional se mantiene en un nivel BAJO.  

Validación del Mapa Preliminar de Amenazas Potenciales del Volcán Cotopaxi -  Zona Oriental

Figura 1. Volcán Cotopaxi. Emisón de vapor de agua y gases se colapsan por el flanco occidental del volcán levantando la ceniza depositada previamente durante el perido agosto-noviembre 2015. Fotografía recuperada de redes sociales. Guadalima S. (21/08/2016).

FJV/DS/SH/AA/EH
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Crónicas de la erupción del volcán Cotopaxi 2015

Volcán Cotopaxi, emisión continua con carga moderada a alta de ceniza dirigida hacia el occidente. Fotografía: Julien Bernard, 9 octubre 2015.

 

El Cotopaxi es un volcán activo de la cordillera Real ubicado a 60 km al sureste de Quito, 45 km al norte de Latacunga y 75 km al noroccidente de Tena. Está cubierto por un casquete glaciar que alimenta tres sistemas fluviales importantes: R. Pita (Norte), R. Cutuchi (Sur) y R. Tambo y Tamboyacu (Este).

En el período histórico (desde 1532) ha presentado al menos cinco ciclos eruptivos principales (1532-1534, 1742-1744, 1766-1768, 1853-1854 y 1877-1880). Dentro de estos se reconocen al menos 13 erupciones mayores (Hall y Mothes, 2008). Los fenómenos volcánicos asociados a estos fueron: caída de ceniza, pómez y escoria, coladas de lava, flujos piroclásticos y lahares. Estos fenómenos afectaron las zonas pobladas aledañas, causando pérdidas humanas, importantes daños en infraestructuras y generando crisis económicas regionales (Sodiro, 1877; Barriga, 2015).

El monitoreo del volcán Cotopaxi empezó en 1976.

Crónicas de la erupción del volcán Cotopaxi 2015

Figura 1. Red de monitoreo del volcán Cotopaxi. Hasta el momento se cuenta con 58 instrumentos de monitoreo, siendo este el volcán mejor monitorizado del Ecuador. OVC: Observatorio del Volcán Cotopaxi, GPS: Global Positioning System, BB: Broadband (banda ancha), SP: Short Period (periodo corto), AFM: Acoustic Frequency Monitor (detector de lahares).

 

La robusta base de datos del IG-EPN permitió definir un nivel de base de la actividad del volcán (Ruiz et al., 1998) y con ello el IG tiene la capacidad de identificar anomalías en el comportamiento del coloso, como las reportadas en: 2001-2002 (Molina et al., 2008; Hickey et al., 2015), 2005, 2009 y más recientemente en el 2015.


Cronología de la erupción del Cotopaxi “2015”

Desde mediados de abril 2015 se observa un incremento de la actividad sísmica del volcán Cotopaxi. A partir de mayo esa actividad es acompañada de un incremento en las emisiones de dióxido de azufre (SO2) registrado en la red de monitorización (Informe Especial N°2, publicado el 2 de junio de 2015). Adicionalmente, gracias al reporte de varios andinistas y personal del Parque Nacional Cotopaxi (PNC), se reconoce también un incremento en el olor a azufre sobre los 5700 m snm. Todos estos cambios muestran una anomalía persistente en el volcán.
El 11 de junio de 2015, en Informe Especial Nº3, el IG-EPN destaca un incremento de la actividad interna, con la aparición de tremor (vibración del conducto), y externa del volcán (fig. 2). En base a los datos del monitoreo se concluye que lo más probable es que la actividad siga incrementándose, pudiendo incluso producir EXPLOSIONES FREÁTICAS en el cráter.

Crónicas de la erupción del volcán Cotopaxi 2015

Figura 2. Volcán Cotopaxi. Se observa actividad fumarólica (vapor de agua y gases) que alcanza más de 1 km snc en dirección SSW. Cámara Sincholahua IG-EPN (14/06/2015).

 

Gracias a fotografías y videos recuperados de redes sociales del cráter del volcán Cotopaxi, se pudo observar la aparición de una laguna color verdosa (fig. 3). La presencia de este cuerpo de agua en el cráter podría favorecer la ocurrencia de EXPLOSIONES FREÁTICAS advierte el IG-EPN en Informe Especial Nº4 del 7 de agosto de 2015.

Crónicas de la erupción del volcán Cotopaxi 2015

Figura 3. a) Imagen de la laguna verde que se ha formado en el cráter del Cotopaxi, zonas fumarólicas y nuevas grietas (recuperada de las redes sociales). b) Foto del cráter del Cotopaxi en Enero 2003 (Patricio Ramón). Nótese que las zonas fumarólicas no son características nuevas. Tomado de Informe Especial Nº 4.

 

El 14 de Agosto del 2015, después de 4 meses de señales premonitores, el IG-EPN reporta la ocurrencia de dos explosiones pequeñas (Informe Especial N°5, publicado a las 06h38), La primera a las 04h02 y la segunda a las 04h07. Estas fueron escuchadas por andinistas que ascendían al volcán. La ocurrencia de explosiones de este tipo fueron señaladas en los Informes Especiales Nº3 y Nº4. Debido a esta actividad se produjó una caída moderada a pequeña de ceniza en los sectores de Jambeli, Machachi, Pedregal, Boliche, Aloag, Tambillo y Amaguaña. Más tarde, a las 10h25 otra emisión de ceniza (entre 6 y 8 km snc), visible desde distintos sitios (fig. 4), dieron lugar a caídas de ceniza hacia el NW y SW del Cotopaxi. Otros eventos explosivos, de menor magnitud a los anteriores ocurrieron a las 13h45 y a las 14h29. Estas emisiones fueron reportadas por la población ya que fueron claramente visibles (Informe Especial N°6). El estudio de la distribución de la caída de ceniza del 14 de agosto permitió calificar la erupción de “pequeña” con un indice de explosividad 1 y una magnitud de 1.2 (Bernard et al., sometido a Bulletin of Volcanology).

Crónicas de la erupción del volcán Cotopaxi 2015

Figura. 4. A la izquierda, explosión registrada a las 10h25 con una columna de emisión de entre 6-8 km snc con dirección al NW y SW. Recuperada de redes sociales, tomada desde Aloag al NW del volcán. A la derecha, Imagen Landsat de la explosión (Escobar, R.).

 

En el mismo reporte (Informe Especial Nº6) se resalta que: “el estudio preliminar de la ceniza producida durante estas explosiones sugiere por el momento que estas no estarían asociadas con el magma en profundidad, sino más bien a la sobrepresurización de un sistema hidrotermal menos profundo (aguas subterraneas), que fue sobrecalentado por el magma en las últimas semanas. Este tipo de explosiones son llamadas "FREÁTICAS" y son comunes en las etapas de reactivación de los volcanes. En los informes precedentes (Informe Especial Nº 3 y 4) se había mencionado la posibilidad de ocurrencia de este tipo de explosión, si bien no se podía prever su magnitud”, ni cuando sucederían. Sin embargo el estudio a detalle de la ceniza realizado en el último año permitió identificar un componente magmático lo que permite recalificar estas explosiones como “freatomagmáticas” (Gaunt et al., sometido a Journal of Volcanology and Geothermal Research).

Tras las explosiones del 14 de agosto la actividad del volcán Cotopaxi se caracterizó por la emisión semi-continua a continua de ceniza (material piroclástico; fig. 5). Esta afectó en gran medida la cotidianidad de las poblaciones ubicadas sobretodo al occidente del volcán (dirección predominante de los vientos). En ocaciones, incluso se reportó la caída de ceniza en sectores tan distantes como: Santo Domingo de los Colorados, El Carmen, Quevedo, Portoviejo y Bahía de Caráquez.

Crónicas de la erupción del volcán Cotopaxi 2015

Figura 5. Volcán Cotopaxi. Emisiones continuas con carga moderada – alta de ceniza dirigidas hacia el occidente, por la dirección predominante de los vientos. Espín Bedón P. IG-EPN, 29/08/2015.

 

La erupción continuó con emisiones de ceniza de menor intensidad hasta el final de noviembre 2015 (Informe Especial N°23, publicado el 9 de diciembre). Adicionalmente, se generaron lahares (flujos de escombros) secundarios que afectarón principalmente el flanco Occidental de volcán y en particular dificultarón el tráfico vehicular en la carretera del PNC en la quebrada Agualongo.

Crónicas de la erupción del volcán Cotopaxi 2015

Figura 6. Intersección de la Q. Agualongo con la vía que va al Refugio dentro del PNC. Nótese la amplia zona de inundación. Tomado del Informe Especial N°23.

 


Actividades realizadas por el IG-EPN
Desde el inicio de la reactivación del volcán Cotopaxi en abril 2015, el personal del IG-EPN ha trabajado en 4 ejes principales:

1.  Mejoramiento y mantenimiento de la red de monitoreo del volcán Cotopaxi. Antes de la reactivación el volcán ya contaba con una de las mejores redes de monitoreo de Latinoamérica lo que permitió identificar las primeras señales de reactivación del coloso. Sin embargo con el fin de mejorar las capacidades de detección se procedió en instalar nuevas estaciones de monitoreo con instrumentos de última generación con la ayuda del grupo VDAP (Volcano Disaster Assistance Program) del servicio geológico de Estados Unidos (USGS) y de la colaboración japonesa JICA. Adicionalmente, debido a la actividad del volcán y en particular a las frecuentes caídas de ceniza, se necesitó realizar un mantenimiento constante de las estaciones e incluso la reubicación de algunas. Ademas, conjuntamente con el ECU911 y la SGR, se conformó una red de vigías en las comunidades aledañas al volcán para preparar e involucrar a las comunidades en el monitoreo volcánico.

2.  Información y capacitación de las autoridades y de la población. A parte de los 28 informes especiales y cerca de 450 informes/noticias diarios publicados desde el 2 de junio de 2015, el IG-EPN se esforzó en informar y capacitar a las autoridades y a la población con decenas de charlas y visitas al campo. El principal objetivo de estas charlas es preparar a la comunidad frente a una posible erupción del volcán e informar sobre las zonas potencialmente afectadas por fenómenos volcánicos, en particular los lahares primarios y las caídas de ceniza.

3.  Evaluación de la amenaza volcánica. Antes de la crisis de 2015 el Cotopaxi ya contaba con mapas de amenazas volcánicas para las zonas Norte y Sur. Sin embargo la escala de estos mapas (1/50 000, publicados en 2004) no era suficientamente precisa para las necesidades de la población y de las autoridades. Por lo tanto se realizó nuevos estudios de campo y simulaciones numéricas para actualizar estos mapas con una escala de 1/5 000. Adicionalmente, se realizó el estudio para la zona oriental que no tenia un mapa de amenza y se presentó a las autoridades una versión preliminar en noviembre 2015. Los nuevos mapas para la zona Norte y Sur, escala 1/5 000, serán publicados proximamente.

4.  Investigación científica. La crisis del Cotopaxi ha sido una oportunidad para estudiar en detalle el despertar de un volcán y sus primeros productos. La investigación científica es un proceso largo donde los resultados deben ser sometidos a la comunidad científica antes de publicarlos. Al momento el IG-EPN tiene varias publicaciones en el proceso de revisión por pares en diferentes revistas internacionales sobre temas como la dinámica eruptiva (Gaunt et al., sometido a Journal of Volcanology and Geothermal Research), la relación entre las emisiones de ceniza y el tremor sísmico (Bernard et al., sometido a Bulletin of Volcanology), el origen de la deformación observada durante la crisis (Mothes et al., sometido a Journal of Volcanology and Geothermal Research). Estos resultados fueron presentados a la comunidad durante un foro internacional de vulcanología organizado en Sangolqui y Latacunga el 15 y 16 de marzo de 2016. También fueron presentados en congresos nacionales (CAMCA 2016) e internacionales (EGU, AGU, COV9). La investigación científica nos permite entender mejor los procesos volcánicos y por ende nos ayuda a mejorar los escenarios eruptivos y pronósticos para informar adecuadamente a la población.

Un año después de las primeras explosiones, el IG-EPN presenta esta breve reseña sobre cómo fue la reactivación del volcán Cotopaxi desde su inicio, con el fin de recordar a la ciudadanía que vivimos en un país de alto riesgo sísmico y volcánico. El primer paso para la reducción de la vulnerabilidad y consecuentemente del riesgo es conocer los fenómenos, buscando información en fuentes confiables.  En momentos de crisis es importante no hacer caso a rumores.

El IG-EPN está continuamente vigilando las variaciones de la actividad en los diferentes volcanes del Ecuador y reportará oportunamente cualquier cambio.

Instituto Geofísico monitoreando la actividad sísmica y volcánica desde 1983.

BB, FJV
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El miércoles 3 de agosto del 2016, el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) junto al Instituto Nacional de Meteorología e Hidrología (INAMHI) hicieron la entrega oficial a la comunidad en general y autoridades del “Mapa de Amenazas Potenciales por Lahares Secundarios Quebrada Yambo Rumi del Volcán Chimborazo”, en la parroquia de San Andrés. Hermuy Calle gobernador de Chimborazo, junto a Mario Ruiz, viceministro de la SGR y Pablo Morillo, Coordinador Zonal 3, presidieron la sesión del Comité de Operaciones de Emergencia provincial (COE).

Aproximadamente 1000 habitantes serían afectados por los Lahares Secundarios del Chimborazo

Foto 1: Entrega oficial del mapa de amenazas potenciales por lahares secundarios quebrada Yambo Rumi – Volcán Chimborazo al gobernador de Chimborazo Hermuy Calle por parte de Francisco Vásconez (IG-EPN) durante el COE provincial Chimborazo.

 

Aproximadamente 1000 habitantes serían afectados por los Lahares Secundarios del Chimborazo

Foto 2: Conferencia del Ing. Francisco Vásconez sobre la evaluación de la amenaza, elaboración del mapa y factores desencadenantes de los lahares secundarios del volcán Chimborazo, auditorio de la parroquia San Andrés (cantón Guano).

 

Entre diciembre 2015 y abril 2016 al menos 4 lahares secundarios han sido reportados en la quebrada Yambo Rumi al suroriente del volcán Chimborazo amenazando a varias comunidades y destruyendo zonas de cultivo y ganadería, vías de comunicación, un tramo de la vía del tren de Hielo y el tramo 146,5 del poliducto de PetroEcuador.

Aproximadamente 1000 habitantes serían afectados por los Lahares Secundarios del Chimborazo

Foto 3: Lahar secundario del volcán Chimborazo, sector de Frutapamba. Fotografía: Vásconez F –IG-EPN 19 Mayo 2016.

 

En la sesión intevinieron el Msc. Bolívar Cáceres, experto glaciólogo del INAMHI, quién expuso sobre la evolución de los glaciares del Chimborazo, destacando que el glaciar se ha reducido en un 69% en área en comparación a 1962, siendo el área actual de 8,5 km2.

Aproximadamente 1000 habitantes serían afectados por los Lahares Secundarios del Chimborazo

Foto 4: Msc. Bolívar Cáceres experto glaciologo del INAMHI expone la evolución de los glaciares del Chimborazo en el periodo 1962-2016.

 

Por otra parte, el Ing. Francisco Vásconez, la contraparte técnica del Instituto Geofísico, explicó cual fue la metodología usada para la evaluación de la amenaza y la elaboración del mapa correspondiente. Vásconez señaló que los lahares más grandes han tenido un volumen entre 300 mil y 700 mil m3 (≈30 mil a 70 mil volquetas llenas de material petreo) y un caudal pico de entre 100 y 150 m3/s. Además, enfatizó que no existe un incremento en la actividad interna del volcán, por lo que se puede descartar este factor como un agente desencadenante de estos fenómenos. También explicó que la ceniza del volcán Tungurahua, 40 km al occidente del Chimborazo, en erupción desde 1999 podría ser también responsable de la reducción de los glaciares del Chimborazo debido a  que el depósito de ceniza sobre el glaciar puede producir un cambio en el albedo (porcentaje de radiación de el glaciar refleja). Particularmente, el periodo eruptivo de noviembre del 2015 (un mes antes de la ocurrencia de los primeros lahares) fue una de las erupciones con mayor emisión de ceniza (80-160 g/m2 sobre el glaciar) desde que se tiene registro de alta precisión de este fenómeno (2010).

Aproximadamente 1000 habitantes serían afectados por los Lahares Secundarios del Chimborazo

Foto 5: Columna de emisión de ceniza del volcán Tungurahua, aproximadamente 3 km snc en dirección Occidental. Nótese como la ceniza se deposita y acumula en el flanco oriental del volcán Chimborazo. Fotografías: Vásconez F. – IG-EPN (05/09/2014).

 

Vásconez resaltó los resultados encontrados por el Dr. Luis Maisincho, experto meteorólogo del INAMHI, quien encontró que el 2015 fue el segundo año más caliente en el registro (2005-2015), año que además estuvo marcado por la ocurrencia del fenómeno de El Niño, presente en Ecuador desde junio. El Niño amplifica los efectos adversos del clima sobre los glaciares. Esta perturbación provocó que el 2015 presente máximos inéditos en las series climáticas registradas a 4900m de altura desde hace 11 años. El incremento de temperatura sobre la superficie de nieve/hielo provoca el derretimiento acelerado del casquete glaciar (incremento en la tasa de fusión), por tanto, mayor cantidad de agua líquida saliendo del mismo.

De manera general se concluye que el origen de los lahares se debe al deshielo de los glaciares del Chimborazo, acelerados por el Calentamiento Global, el fenómeno de El Niño presente desde junio 2015 y la ceniza del Tungurahua, particularmente los periodos de noviembre 2015 y febrero-marzo 2016. El derretimiento abría dado lugar a la formación de varias lagunas superficiales e intraglaciares (bolsones de agua en el interior del glaciar y/o hielo muerto) que al acumular mucha agua se abrían desbordado y/o colapsado proporcionando grandes cantidades de agua en un tiempo corto dando lugar a la formación de estos lahares secundarios.

El derretimiento acelerado de los glaciares del Chimborazo aumenta la probabilidad de generar nuevos lahares secundarios, no sólo en la quebrada  Yambo Rumi, sino también en otras quebradas alrededor del volcán. Sobrevuelos al volcán son esenciales para identificar estas zonas, resaltó Vásconez.

Hermuy Calle, destacó “La importancia del trabajo realizado por todas las instituciones técnicas, que ejecutaron las investigaciones necesarias para brindarnos estos insumos, que se han convertido en una herramienta de trabajo indispensable para todos y que también nos permitirá direccionar acciones importantes a favor de las personas que habitan en las zonas de riesgo”.

Finalmente, el COE planteó dos resoluciones generales: La Secretaría de Gestión de Riesgos (SGR) compartirá los mapas de amenazas con todas las instituciones que forman parte del COE provincial y las entidades que presten servicios o que tengan infraestructura en las zonas de posible afectación por lahares secundarios. Adicionalmente se deberán actualizar los planes de contingencia en base a los mapas.

Aproximadamente 1000 habitantes serían afectados por los Lahares Secundarios del Chimborazo

Foto 6: Msc. Pablo Morillo cordinador zonal 3 de SGR compartirá los mapas entregados por los técnicos del IG-EPN a todas las instituciones que forman parte del COE provincial y entidades que presten servicios o tengan infraestructura en zonas de riesgo.

 


FJV, SH, ET
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Disminución de actividad sísmica

RESUMEN

El 5 de junio del presente año se registró un incremento en el número de eventos sísmicos tipo VT (generados por fracturamiento de rocas). Al momento esta actividad sísmica tiende a disminuir progresivamente llegando a niveles considerados como normales para este volcán. Cabe indicar también que no hay cambios en la deformación ni en la emisión de gases. Se considera entonces que esta anomalía no involucró un ascenso de magma y que el volcán está retomando sus niveles de actividad de base.


INTRODUCCION

El 15 de junio del presente año, el Instituto Geofísico en el Informe Especial Volcán Cayambe N.- 1, reportó la ocurrencia de una anomalía sísmica en dicho volcán. Posteriormente a este informe, el Instituto Geofísico ha trabajado en el análisis de los datos sísmicos y en el incremento de la capacidad de vigilancia instrumental instalada en la zona.

El Cayambe es un volcán activo. Posee un casquete glaciar sobre los 4800 m. El volcán se ubica a 15 km al oriente de la ciudad de Cayambe y los ríos que nacen de sus flancos cruzan el Valle Interandino alimentando al río Guayllabamba y otros se dirigen hacia el Oriente y desembocan en el río Quijos. El volcán Cayambe ha tenido al menos 21 eventos eruptivos en los últimos 4000 años (Samaniego et al. 1998). En base a los estudios geológicos, estadísticamente el volcán Cayambe tiene un periodo de recurrencia de erupciones de aproximadamente 200 años. Su último periodo eruptivo data de 1785-1786.

La red de monitoreo de este volcán está compuesta por 3 estaciones sísmicas, 1 estación inclinométrica, 1 GPS y 1 estación de medición de SO2. El monitoreo especialmente sísmico se inició en 1995 y los datos de estas estaciones llegan a tiempo real al IG-EPN.

Informe Especial Cayambe N. 2 - 2016

Figura 1. Red de monitoreo del Volcán Cayambe, formada por estaciones sismológicas que funcionan desde 1995 y estaciones inclinométricas – GPS que permiten medir la deformación de los flancos del volcán y un estación que mide la emisión de SO2.

 

ACTIVIDAD SÍSMICA

La figura 2 muestra una actualización de la actividad sísmica registrada en las últimas semanas, en ella se observa claramente una disminución en el número de eventos sísmicos, llegando a los niveles de base para el Cayambe, establecidos desde el año 1995, fecha en que se instaló la primera estación sísmcia en el volcán.

La secuencia de eventos registrada en junio responde a lo que se denomina un enjambre sísmico, es decir no existe un evento de magnitud mayor alrededor del cual se generen eventos más pequeños. En este periodo se contabilizaron 2300 sismos, siendo este el número más grande de eventos registrado en este volcán desde que se tiene monitoreo sísmico (Figura 3).

Informe Especial Cayambe N. 2 - 2016

Figura 2. Número total y tipo de sismos diarios del volcán Cayambe desde 1 de Enero 2016 hasta 2 de Julio 2016. Las columnas son separadas entre los tipos de eventos (VT = volcano-tectónico, LP = largo periodo, TREM = episodios de tremor y HB = híbridos).

 

Informe Especial Cayambe N. 2 - 2016

Figura 3. Número mensual de eventos registrados en el volcán Cayambe desde 1995. Las columnas son separadas entre los tipos de eventos (VT, LP, TREM y HB).

 

En la figura 4 se muestra la localización de los eventos tipo VT registrados en Junio e inicios de Julio, en donde se mantiene la concentración de sismos al noreste del volcán, similar a lo reportado en el informe anterior.

Informe Especial Cayambe N. 2 - 2016

Figura 4: Los eventos localizados cerca del volcán Cayambe desde comienzos de Junio del 2016. Los eventos amarillos ocurrieron desde el último informe (22 de Junio). Las líneas negras al noreste de la figura corresponden a los segmentos del sistema de falla Chingual.

 

En la figura 5 se observa un ejemplo de estos sismos volcano tectónicos.

Informe Especial Cayambe N. 2 - 2016

Figura 5. Sismogramas, espectros y espectrogramas de evento del 13 de junio a las 18h26.

 

DEFORMACION
El procesamiento de los datos de la estación CYMI con datos de los últimos días indica que no  hay deformación relacionada con el volcán (Figura 6).

Informe Especial Cayambe N. 2 - 2016

Figura 6: Serie temporal de la estación de GPS “CYMI”. Se observa claramente el salto que sufrió luego del terremoto del 16 de Abril del 2016, línea roja, pero no muestra cambios posteriores.

 

INTERPRETACION

La actividad sísmica observada en Junio presenta características propias de un enjambre.  Tomando en cuenta este hecho y la vecindad con un volcán activo como el Cayambe, se considera que este enjambre tiene un origen en un incremento puntual de presiones en el interior del volcán.  El número de sismos ha regresado a los niveles previos y no se han observado anomalías geoquímicas o de deformación de los flancos. Se considera entonces que  esta anomalía no involucró un ascenso de magma y que el volcán está retomando sus niveles de actividad de base.


MP/MR/AA/PC
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

La actividad superficial del volcán El Reventador durante los últimos meses se ha mantenido como alta. Durante los trabajos de mantenimiento de la red de monitoreo, entre el 08 al 10 de junio del 2016 personal del Instituto Geofísico evidenció la alta actividad eruptiva en el volcán.

Existe una salida continua de gases volcánicos y vapor de agua (altura de la pluma hasta 800m s.n.c. con dirección NW) como lo que se ve en la Figura 1.

Actividad superficial del volcán El Reventador

Figura 1: Vista del volcán desde el flanco SW. Emisión de gases y vapor de agua. (Foto: G. Viracucha IG-EPN).

 

Las explosiones producidas son moderadas, con acústica similar a cañonazos audibles al pie del volcán, y generan columnas de emisión de alrededor de 2 km de altura sobre el nivel del cráter con presencia de carga moderada de ceniza.

Estos eventos explosivos están siendo recurrentes en el volcán, como se puede evidenciar en el sismograma correspondiente al día 09/06/2016.

Actividad superficial del volcán El Reventador

Figura 2: Columna de emisión de 2km s.n.c con carga moderada de ceniza asociada a la explosión, con su respectiva señal sísmica y espectral, ocurrida a las 06H13 del 09/06/2016. Vista del volcán desde el flanco SW. (Foto: G. Viracucha IG-EPN).

 

Los depósitos generados debido al descenso de flujos piroclásticos asociados a la actividad explosiva alta del volcán, son claramente visibles, así como el descenso de bloques incandescentes expulsados en las explosiones. Este fenómeno es registrado en todos los flancos del volcán, principalmente en el flanco sur y el flanco norte del edificio. (Figura 1).

Actividad superficial del volcán El Reventador

Figura 3: a) Vista del volcán desde el flanco SW. Emisión de gases y vapor de agua y b) depósitos de flujos piroclásticos. (Foto: G. Viracucha IG-EPN).

 

La vegetación al interior de la caldera, en el sector oriental y nororiental muestra la presencia de ceniza fina, gris.  Debido que el viento moviliza la ceniza de la columna de emisión (Figura 3).

Actividad superficial del volcán El Reventador

Figura 4: Vegetación afectada por caída de ceniza. (Foto: G. Viracucha IG-EPN).

 

La actividad del volcán el Reventador se mantiene en niveles altos, con permanentes explosiones, recurrentes flujos piroclásticos y emisión con carga moderada de ceniza que se dispersa hacia los alrededores del volcán sin que se produzca gran impacto en las zonas pobladas aledañas al volcán.

 

GV, MFN
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Anomalía en la actividad sísmica

RESUMEN
Desde la primera semana del mes de Junio se observó una anomalía sísmica en el volcán Cayambe, la misma que se hizo más evidente a mediados del mes, pero que al momento tiende a disminuir. Sin embargo, es necesario indicar que esta anomalía sísmica es la más intensa registrada desde el año 1995.

Los eventos sísmicos están relacionados al fracturamiento de rocas y se ubican en el extremo nor-oriental del edificio. Estas características permiten calificar a estos eventos como sismos volcano-tectónicos distales. Este tipo de sismos se dan en las zonas de falla cercanas a volcanes. En el caso del volcán Cayambe, el sistema de fallas Chingual pasa por esta zona.

Los datos de las redes GPS e inclinómetros instaladas en el volcán no muestran evidencias de deformación en el edificio volcánico.


INTRODUCCION

El volcán Cayambe es un volcán activo ubicado en la parte norte de la Cordillera Real del Ecuador, a 60 km al nororiente de Quito y a 15 km al oriente de la ciudad de Cayambe (20.000 habitantes). Su parte somital está formada por un complejo de domos, entre los cuales se destaca la cumbre occidental con una altura máxima de 5790 m. Posee un casquete glaciar que se inicia alrededor de los 4800 m, con un área aproximada de 22 km2.

En los últimos 4000 años se han identificado al menos 21 eventos eruptivos de los cuales el más reciente se dio entre 1785-1786 (Samaniego et al. 1998). En base a los estudios geológicos, estadísticamente el volcán Cayambe tiene un periodo de recurrencia de erupciones de aproximadamente 200 años.


ACTIVIDAD SÍSMICA

La figura 1 se muestra la sismicidad mensual desde 1995 hasta junio 2016. La actividad de base está compuesta por eventos asociados al movimiento de fluidos del tipo de Largo Periodo (barras azules), que son comunes en volcanes activos. Entre diciembre 2001 y enero 2002, se sumaron a estos sismos de tipo LP (largo periodo), sismos asociados al fracturamiento de rocas, denominados volcano tectónicos (barras de color rojo). Posteriormente se produjeron otros episodios de este tipo, pero de menor intensidad, el más reciente ocurrió durante septiembre del año 2005, posterior a lo cual la actividad sísmica retornó al nivel de base.

Desde el 6 de junio de 2016 se observó un nuevo incremento en la sismicidad correspondiente a eventos de fractura (volcano-tectónicos, VT) (barras de color rojo), tal como se observa en la figura 2. Este nuevo incremento alcanzó un pico importante entre el 12 y 13 de junio, muy por encima de lo observado en el 2001-2002. A partir de estas últimas fechas la actividad comenzó a disminuir nuevamente, pero se mantiene sobre el nivel base establecido desde 1995 para este volcán.

Informe Especial Cayambe N. 1 - 2016

Figura 1. Número mensual de eventos registrados en el volcán Cayambe desde 1995. VT= volcano-tectónico, LP= largo periodo, TREM= episodios de tremor y HB= híbridos). Cabe destacar que para Junio 2016 solo se puede graficar los datos hasta la fecha actual, 19 de junio.

Informe Especial Cayambe N. 1 - 2016

Figura 2. Número total y tipo de sismos diarios del volcán Cayambe desde 1 de Enero 2016 hasta 19 de Junio 2016. Las columnas son separadas entre los tipos de eventos (VT, LP, TREM y HB).

Los eventos tipo VT registrados en este mes han sido localizados y muestran una concentración de al noreste del volcán (Figura 3).

Informe Especial Cayambe N. 1 - 2016

Figura 3: Los eventos localizados cerca del volcán Cayambe desde comienzos de Junio del 2016, las líneas negras al nor este de la figura corresponden a los segmentos del sistema de falla Chingual.

DEFORMACION

En la estación GPS de Cayambe ubicada al oeste del volcán (CYMI), en el periodo comprendido entre el 2 al 11 de Junio del 2016 no hay cambios en la señal que muestra deformación, tal como se observa en la figura 4. El cambio que se marca en rosado en la figura corresponde al efecto co-sísmico y post-sísmico del terremoto del 16 de Abril del 2016.

Para las otras estaciones GPS cercanas a Cayambe como Ibarra, Cuicocha, Salvefacha y Lumbaqui tampoco se observa ningún cambio.

Informe Especial Cayambe N. 1 - 2016

Figura 4: Deformación registrada en la estación de GPS CYMI. Se movió claramente durante el terremoto del 16 de Abril del 2016 como se observa en el área sombreada.

CONCLUSIONES

La localización de estos sismos hacia el límite noreste del edificio volcánico, permite considerarlos como un enjambre sísmico de eventos Volcano-Tectónicos distales. Estos pueden ser causados por cambios en el estado de esfuerzos en el interior del volcán y pueden afectar zonas aledañas, en especial aquellos lugares en donde existen fallas. Este es el caso de este enjambre, ya que uno de los segmentos del sistema principal de fallas Chingual, pasa por este sector. Hay que resaltar también que hasta el momento no hay evidencias de deformación en el edificio volcánico que pudiesen indicar la presencia de una intrusión magmática.

El Instituto Geofísico continúa con el monitoreo de este volcán y cualquier cambio en su actividad será informado.


MP/FV/MR/PJ/BB/PC/AA/SH
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

En respuesta a la preocupación de los guardaparques y moradores del sector, quienes han reportado la existencia de zonas con fuertes emisiones de gas. Un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) partió este jueves 02 de junio de 2016 rumbo al Complejo Volcánico Pululahua.

El personal del IG se dirigió a la zona del cráter, ubicada al nor-occidente de San Antonio de Pichincha. Allí los técnicos efectuaron mediciones de parámetros físico-químicos, muestreo de aguas y medición de emisiones de CO2 (figura 1).

Medición de parámetros físico-químicos en aguas termales y fuentes de gas del complejo volcánico Pululahua

Figura 1.- Ruta recorrida por el personal del IG el 3 de junio de 2016 durante el reconocimiento y medición de anomialias de gases y aguas termales.

 

Es necesario remarcar que los fluidos (gases y agua), liberados desde el sistema hidrotermal de un volcán, a menudo revelan cambios en su comportamiento, es por eso que deben ser monitorizados con cierta periodicidad.

Medición de parámetros físico-químicos en aguas termales y fuentes de gas del complejo volcánico Pululahua

Figura 2.- Medición de CO2 difuso en las fuentes de gases del complejo volcánico Pululahua (Fotos: D. Sierra, F. Vásconez).

 

Los técnicos utilizaron el Instrumento LI-COR para determinar la concentración de CO2 emanado desde el suelo (figura 2). Adicionalmente en las zonas de emisión de gas se encontraron animales muertos (raposas y aves pequeñas), que al estar sometidos a éstas grandes concentraciones de CO2, sufren asfixia (figura 3). Los comuneros, quienes aseguran que este fenómeno ha estado presente desde hace muchos años,  han cercado estas zonas, evitando así que la vida de los seres humanos y del ganado corra peligro.

Medición de parámetros físico-químicos en aguas termales y fuentes de gas del complejo volcánico Pululahua

Figura 3.- En las fuentes de CO2 se encontraron varios cadáveres de animales pequeños, muertos por asfixia al estar expuestos al CO2 liberado (Fotos: F. Vásconez).

 

Los técnicos del IG realizaron también mediciones de pH, conductividad y temperatura en la fuente del Pailón. Así mismo se recolectaron muestras de agua que posteriormente se analizarán  en el laboratorio del Centro de Investigación y Control Ambiental (CICAM) de la EPN (figura 4).

Medición de parámetros físico-químicos en aguas termales y fuentes de gas del complejo volcánico Pululahua

Figura 4.- Medición de CO2 difuso en la fuente termal de las acacias (Foto: D. Sierra).

 

El Instituto Geofísico de la Escuela Politécnica Nacional hace extenso un cordial agradecimiento al personal de de la reserva ecológica Pululahua en especial a los Srs: Byron Lagla, Jofrey de la Cruz, Raúl Santillán y a los moradores del sector destacando al Sr. Humberto Moromenacho, quienes hicieron el papel del guías y acompañaron a los técnicos del IG para que pudieran realizar adecuadamente el trabajo de campo.

Los resultados de los análisis están siendo procesados y un informe técnico será emitido en los próximos días.


FV, DS, SH
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Actualización de la actividad del volcán y análisis de la posibilidad de reactivación a mediano plazo (semanas a meses)

Resumen
El volcán Tungurahua ha mantenido una actividad superficial baja desde su última erupción (26/02-15/03/2016). Su actividad sísmica y de desgasificación se ha mantenido en los niveles de base, excepto por un pequeño enjambre de eventos sísmicos de Largo Periodo (LP's) ocurrido entre el 1 y el 20 de mayo asociado a movimientos de fluidos. Sin embargo, las observaciones de la deformación muestran una intrusión magmática desde el final de la última erupción.

En los últimos 8 años el volcán Tungurahua ha mostrado de manera repetitiva estos periodos de aparente quietud y las reactivaciones después de estos han presentado señales premonitoras claras a corto plazo (horas a días) en solo el 20% de las veces. En base a eso y al tiempo de reposo que ha tenido el volcán hasta ahora (79 días), se estima que una reactivación del Tungurahua a mediano plazo (semanas a meses) es probable y se define dos escenarios eruptivos potenciales: 1) una reactivación paulatina, de estilo estromboliana, con principalmente caída de ceniza que corresponde al escenario más probable; 2) una reactivación rápida, de estilo vulcaniana, con una gran columna eruptiva y flujos piroclásticos. Estos escenarios están detallados al final de este documento. El objetivo de este informe es prevenir oportunamente a las autoridades y la población de la posibilidad de una erupción del Tungurahua a mediano plazo (semanas a meses).


Sismicidad

En los últimos meses, después de la última erupción, se observa una baja actividad sísmica en general (Fig. 1), registrándose diariamente menos de 2 sismos de tipo Volcano-Tectónico (VT), sin explosiones ni tremor de emisión. Entre el 1 y el 20 de mayo de 2016 se registró un pequeño enjambre de sismos de tipo Largo Periodo (LP). Estos enjambres son comunes en periodos de quietud y son asociados a movimientos de fluido dentro del edificio volcánico.

Informe Especial Tungurahua N. 6 - 2016

Figura 1. Número de eventos Volcano-Tectónicos (VT's), Largo Periodo (LP's), Explosiones y tremor de emisión en el Tungurahua hasta el 31/05/2016. La zona gris corresponde a la última erupción del Tungurahua entre el 26/02 y el 15/03/2016. Note el pequeño enjambre de LP's entre el 01 y el 20/05/2016 en el rectángulo rojo.

 

Deformación
La estación inclinométrica de Retu (Refugio Tungurahua) ubicada al norte del cráter muestra una clara tendencia inflacionaria (ver dirección de la flecha en la Fig. 2) desde el final de la última erupción tanto en el eje radial (~600 μrad, microradianes) como en el eje tangencial (~200 μrad). Esta tendencia se observa también en el eje tangencial del inclinómetro de Mndr (Mandur, flanco Noroccidental) pero con una amplitud mucho más pequeña (~30 μrad) debido probablemente a una mayor distancia entre el instrumento y la fuente de presión. En las otras estaciones de la red de inclinometria no se observa un patrón de deformación evidente. Sin embargo es destacable que con la finalización del último periodo eruptivo, el sensor de Retu empezó de registrar evidencias de movimiento de magma.

Informe Especial Tungurahua N. 6 - 2016

Figura 2. Patrón de deformación registrada en los inclinómetros de Retu (Refugio Tungurahua) y Mndr (Mandur) hasta el 30 de mayo de 2016. La zona gris corresponde a la última erupción del Tungurahua. Se nota una tendencia inflacionaria en los dos ejes de Retu y en el eje tangencial de Mndr.

 

Emisión del SO2
No se observa mayor cambio en la desgasificación desde el fin de la última fase eruptivo tanto para el flujo diario máximo de SO2 (Fig. 3) como para el número de medidas válidas (Fig. 4). Los dos indicadores se encuentran en el nivel de base.

Informe Especial Tungurahua N. 6 - 2016

Figura 3. Flujo diario máximo de SO2 desde hasta el 30/05/2016. Se observa una disminución al nivel de base de desgasificación después de la última erupción (zona gris). Entre el 18/04 y el 02/05 se observa un periodo de perdida de las señales debido a un problema técnico.

 

Informe Especial Tungurahua N. 6 - 2016

Figura 4. Número de medidas válidas registradas en la estación con el mayor flujo de SO2 hasta el 30/05/2016.Se observa una disminución de número de medidas válidas después de la última erupción (zona gris). Entre el 18/04 y el 02/05 se observa un periodo de perdida de las señales debido a un problema técnico.

 

Observaciones visuales
Durante los últimos dos meses, las condiciones de observación visual han sido variables. La actividad superficial, cuando el volcán estuvo despejado, se caracterizó por actividad fumarólica de baja intensidad y una ausencia de emisiones de ceniza desde el fin de la última erupción (Fig. 5).

Informe Especial Tungurahua N. 6 - 2016

Figura 5. Volcán Tungurahua con baja actividad superficial, foto tomada desde el Observatorio del Volcán Tungurahua (31/05/2016; S. Aguaiza, OVT-IGEPN).

 

Interpretación
En los últimos 8 años de actividad el volcán Tungurahua ha tenido 15 periodos de quietud similares al periodo actual con una actividad sísmica baja, una deformación con tendencia inflacionaria, y una actividad superficial caracterizada por fumarolas de baja energía por más de un mes. En su mayoría estos periodos de quietud fueron seguidos por erupciones de tamaño pequeño (Índice de Explosividad Volcánica IEV 0-1 con principal fenómeno las caídas de ceniza) y en algunas veces por erupciones más grandes (IEV 2 con flujos piroclásticos). Es importante notar que la gran mayoría (80%) de estas erupciones no tuvieron señales premonitoras de reactivación a corto plazo (horas a días). La deformación actual del volcán es una evidencia de intrusión magmática (movimiento de magma a partir de un reservorio más profundo) que se ha observado en muchas ocasiones antes de las erupciones del Tungurahua. La baja desgasificación podría indicar un taponamiento del conducto que impide el paso libre de los gases magmáticos. Tomando en cuenta que el periodo actual de quietud ha sobrepasado dos meses (78 días) se estima que una reactivación a mediano plazo (próximas semanas a meses) es probable.


Escenarios eruptivos

En base a los resultados del monitoreo volcánico y en la historia reciente de reactivaciones del Tungurahua se propone dos escenarios eruptivos que podrían ocurrir a mediano plazo (próximas semanas a meses):

  • 1) Reactivación paulatina. Durante este escenario de estilo estromboliano, que puede durar desde varias semanas hasta algunos meses, se podría observar explosiones pequeñas a moderadas, fuentes de lava y columnas continuas de ceniza de menos de 6 km sobre el nivel del cráter (ej. Abril-Mayo 2011, Marzo 2013, Abril 2015). El principal fenómeno sería la caída de ceniza moderada a fuerte, la cual afectaría principalmente la zona occidental del volcán (excepto si se observa un cambio de la dirección del viento). Proyectiles balísticos (bloques y bombas volcánicas) y flujos piroclásticos pequeños podrían alcanzar una distancia de 2,5 km desde el cráter. Lahares secundarios pequeños se podrían formar debido a la removilización del material eruptivo por lluvia y podrían cortar la carretera Baños-Penipe. Este es el escenario eruptivo más probable para las próximas semanas/meses.
  • 2) Reactivación rápida. Durante este escenario de estilo vulcaniano, al inicio de la fase eruptiva o después de pocos días, se podría producir una apertura rápida del conducto con explosiones moderadas a grandes (ej. Mayo 2010, Julio 2013, Abril 2014). En este escenario se podría formar una columna eruptiva grande (hasta 10 km sobre el nivel del cráter) y flujos piroclásticos que podrían descender por las quebradas hasta alcanzar el pie del volcán. Las caídas de ceniza y cascajo asociadas a este tipo de columna eruptiva alta tienen una mayor probabilidad de afectar zonas más lejos del volcán con direcciones más variables debido a la variabilidad de la dirección de los vientos a esa altura. Los proyectiles balísticos (bloques y bombas volcánicas) asociados a las explosiones podrían alcanzar una distancia de 5 km desde el cráter. En este escenario pequeños flujos de lava podrían bajar por el flanco Noroccidental con un alcance de menos de 4 km. Al igual que en el escenario 1, lahares secundarios se podrían formar debido a la removilización del material eruptivo por lluvia y podrían cortar la carretera Baños-Penipe. En función de la cantidad de material acumulado en las quebradas y de la intensidad/duración de la lluvia estos lahares podrían ser pequeños a moderados.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán y del análisis de los datos provenientes del monitoreo instrumental y visual. El IGEPN mantiene una vigilancia permanente en el centro TERRAS (Quito) y en el Observatorio del Volcán Tungurahua.

 

BB-PM-VL-SA-DS-SH
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), realizó trabajo de campo entre el 18 y 20 de mayo de 2016 en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo. En este sector varios flujos de lodo y escombros han afectanto a la comuna de Santa Lucia de Chuquipogyo (Parroquia de San Andrés-Cantón Guano), siendo el mayor de ellos el ocurrido el 29 de abril de 2016.

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 1: Mapa de ubicación, y en rojo se aprecia la trayectoria de la quebrada Yambo Rumi por donde descienden los flujos de lodo.

 


Durante estos días se recorrió gran parte de la quebrada Yambo Rumi, con el fin de obtener datos de la magnitud de los eventos que están ocurriendo en la zona y de calibrar los primeros modelamientos numéricos cuyo objetivo es obtener un mapa de amenaza en el corto y mediano plazo.

El día 18 se recorrió los sectores desde Santa Lucia hasta San Andrés, en el recorrido se pudo apreciar bloques de gran tamaño (hasta 3 metros de diámetro) que descendieron de las partes altas y que se depositarón en la zona del poliducto (puente de piedra de Santa Lucia), así también se pudo observar que en ciertas zonas el flujo de lodo sobrepaso el borde de la quebrada (cauce natural), provocando el desborde de la misma y con ello cubriendo ciertos tramos de las carreteras, puentes y sembríos. A medida que se desciende en altitud se aprecia como el flujo de lodo va disminuyendo en cuanto a los tamaños de grano desde bloques de varios metros en la parte alta hasta granos tipo arena y limo en la zona baja.

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 2: Desborde del flujo de lodo sobre la carretera hacia el sector de Cuatro Esquinas (Foto: FJ. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 3: Personal realizando medidas de altura que alcanzo el flujo de lodo el cual sobrepasó un pequeño puente que encontró en su camino. Además se realizó medidas del ancho y profundidad de la quebrada con un distanciometro (Foto: FJ. Vásconez/E. Telenchana-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 4: Personal indicando la altura que alcanzo la cola del flujo de lodo (Foto: FJ. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 5: Desborde del flujo, el cual cubrió parte de los cultivos sembrados por los pobladores, cerca al sector de San Andrés, tamaño del material tipo arena (Foto: E. Telenchana-IGEPN).

 


El día 19 se recorrió las partes altas de la quebrada desde el sector de Fruta Pampa hasta Santa Lucia, donde se pudo observar que el flujo de lodo habia socavado la quebrada varios metros en ciertos lugares haciendose más profunda y ancha ya que el material del talud es fácilmente erosionable (incluso por la acción de los fuertes vientos). En la planicie de Fruta Pampa el flujo de lodo en su parte más ancha sobrepasa los 220 m.

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 6: Quebrada Yambo Rumi en su parte alta, más profunda y ancha. Al fondo se aprecia la planicie de inundación (Fruta Pamba) donde el flujo sobrepasa los 220 m de ancho (Foto: FJ. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 7: Se aprecian bloques de gran tamaño (aprox. 2,5 metros) a través de toda la quebrada (Foto: F. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 8: Parte baja de Fruta Pampa, se aprecia que la quebrada gana pendiente haciéndose más profunda y ancha, y luego el mismo llega a una zona de inundación donde cubrió la vegetación y afecto a una casa (Foto: FJ. Vásconez-IGEPN).

 

El día 20 se inspeccionó otras dos zonas muy cerca a Santa Lucia de Chuquipogyo, donde el flujo se desborda cubriendo grandes extensiones (más de 200 m de ancho), enterrando la vegetación y afectando los sembríos y construcciones que se encontraba a su paso, la parte más diluida del flujo (material fino) incluso ingresó a unas cuantas viviendas y así también dañando vías de acceso y de comunicación entre la población.

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 9: Se puede apreciar dos zonas de inundación, las mismas que cubrieron la vegetación. Su parte más ancha  sobrepasa los 200 m (Foto: FJ. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 10: Una pequeña casa afectada por el paso del flujo de lodo (Foto: FJ. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 11: Zona de inundación, el flujo se desborda afectando la vegetación y vías de comunicación (Foto: FJ. Vásconez-IGEPN).

 

Inspección y calibración de las simulaciones numéricas de flujos de lodo y escombros producidos en la quebrada Yambo Rumi, zona suroriental del volcán Chimborazo

Figura 12: Arboles afectados por el paso del flujo de lodo y escombros (Foto: F. Vásconez-IGEPN).

 

El trabajo realizado cosntituye una primera fase de calibración de los diferentes modelos numéricos aplicados para determinar las potenciales áreas de inundación por flujos de lodo y escombros, que al corto y mediano plazo permitirán la elaboración de un mapa de amenaza por lahares secundarios para la quebrada de Yambo Rumi. El Instituto Geofísico (IG-EPN), INAMHI y SGR mantendrá informada a la comunidad sobre los avances realizados en este estudio.


ET, FJV
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad

Como parte del monitoreo que el Instituto Geofísico de la Escuela Politécnica Nacional realiza en los volcanes del Ecuador,  personal del IG efectuó mediciones de parámetros físico-químicos y muestreo de aguas en las fuentes termales en el Complejo Volcánico Pichincha.

Un grupo de técnicos del IG partió este lunes 16 de Mayo de 2016 rumbo a la zona de Palmira, ubicada al Suroeste del  cráter del Guagua Pichincha. Se realizó un reconocimiento y un muestreo en dos fuentes de aguas termales en los balnearios de Palmira y Las Acacias.

Participación en las “Medición de parámetros físico-químicos en aguas termales del complejo volcánico Pichincha

Figura 1.- Ruta transitada por el personal del IG el 16 de Mayo de 2016 durante el reconocimiento y medición de fuentes termales.

 

Los fluidos (gases y agua) liberados desde el sistema hidrotermal pueden revelar cambios en el comportamiento de los volcanes, es por eso que éstos que deben ser monitorizados con cierta periodicidad.

Participación en las “Medición de parámetros físico-químicos en aguas termales del complejo volcánico Pichincha

Figura 2.- Medición de CO2 difuso en la fuente termal de Palmira (Foto: F. Vásconez).

 

Los técnicos del IG realizaron mediciones de pH, conductividad y temperatura. Así mismo se recolectaron muestras de las aguas que posteriormente se analizan  en el laboratorio del el Centro de Investigación y Control Ambiental (CICAM) de la EPN. Además se utilizó un instrumento que permite medir el flujo de CO2 difuso en ambas fuentes termales.

Participación en las “Medición de parámetros físico-químicos en aguas termales del complejo volcánico Pichincha

Figura 3.- Medición de CO2 difuso en la fuente termal de las acacias (Foto: D. Sierra).

 

DS, SH, FV
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Comunidad
No se han encontrado eventos

Con el apoyo logístico de: